diff --git a/.github/workflows/ttnn-run-sweeps.yaml b/.github/workflows/ttnn-run-sweeps.yaml index 1dc1a5fc655e..d3b613d1dd1c 100644 --- a/.github/workflows/ttnn-run-sweeps.yaml +++ b/.github/workflows/ttnn-run-sweeps.yaml @@ -75,6 +75,7 @@ on: - eltwise.composite.binary.subalpha.subalpha - eltwise.composite.binary.minimum.minimum - eltwise.composite.binary.maximum.maximum + - eltwise.composite.binary.maximum.maximum_pytorch2 - eltwise.ternary.addcmul.addcmul - eltwise.ternary.addcdiv.addcdiv - eltwise.ternary.mac.mac diff --git a/tests/sweep_framework/sweeps/eltwise/composite/binary/maximum/maximum_pytorch2.py b/tests/sweep_framework/sweeps/eltwise/composite/binary/maximum/maximum_pytorch2.py new file mode 100644 index 000000000000..978302999d21 --- /dev/null +++ b/tests/sweep_framework/sweeps/eltwise/composite/binary/maximum/maximum_pytorch2.py @@ -0,0 +1,95 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import torch +import random +import ttnn +from tests.sweep_framework.utils import gen_shapes +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 30 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "maximum_1": { + "input_shape": [ + [1, 16, 1, 60], + # [1,16,s10+1], + [1, 16, 19, 19], + [1, 16, 59, 59], + ], + "input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + "input_b_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + "input_a_layout": [ttnn.TILE_LAYOUT], + "input_b_layout": [ttnn.TILE_LAYOUT], + "input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + "input_b_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + "output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + }, +} + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra. +def run( + input_shape, + input_a_dtype, + input_b_dtype, + input_a_layout, + input_b_layout, + input_a_memory_config, + input_b_memory_config, + output_memory_config, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + + torch_input_tensor_b = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype + )(input_shape) + + torch_output_tensor = torch.max(torch_input_tensor_a, torch_input_tensor_b) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_a_layout, + device=device, + memory_config=input_a_memory_config, + ) + + input_tensor_b = ttnn.from_torch( + torch_input_tensor_b, + dtype=input_b_dtype, + layout=input_b_layout, + device=device, + memory_config=input_b_memory_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.maximum(input_tensor_a, input_tensor_b, memory_config=output_memory_config) + output_tensor = ttnn.to_torch(output_tensor) + e2e_perf = stop_measuring_time(start_time) + + return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]