-
Notifications
You must be signed in to change notification settings - Fork 816
/
Copy pathtrain_tacotron2.py
executable file
·528 lines (461 loc) · 18 KB
/
train_tacotron2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train Tacotron2."""
import tensorflow as tf
physical_devices = tf.config.list_physical_devices("GPU")
for i in range(len(physical_devices)):
tf.config.experimental.set_memory_growth(physical_devices[i], True)
import sys
sys.path.append(".")
import argparse
import logging
import os
import numpy as np
import yaml
from tqdm import tqdm
import tensorflow_tts
from examples.tacotron2.tacotron_dataset import CharactorMelDataset
from tensorflow_tts.configs.tacotron2 import Tacotron2Config
from tensorflow_tts.models import TFTacotron2
from tensorflow_tts.optimizers import AdamWeightDecay, WarmUp
from tensorflow_tts.trainers import Seq2SeqBasedTrainer
from tensorflow_tts.utils import calculate_2d_loss, calculate_3d_loss, return_strategy
class Tacotron2Trainer(Seq2SeqBasedTrainer):
"""Tacotron2 Trainer class based on Seq2SeqBasedTrainer."""
def __init__(
self,
config,
strategy,
steps=0,
epochs=0,
is_mixed_precision=False,
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
config (dict): Config dict loaded from yaml format configuration file.
is_mixed_precision (bool): Use mixed precision or not.
"""
super(Tacotron2Trainer, self).__init__(
steps=steps,
epochs=epochs,
config=config,
strategy=strategy,
is_mixed_precision=is_mixed_precision,
)
# define metrics to aggregates data and use tf.summary logs them
self.list_metrics_name = [
"stop_token_loss",
"mel_loss_before",
"mel_loss_after",
"guided_attention_loss",
]
self.init_train_eval_metrics(self.list_metrics_name)
self.reset_states_train()
self.reset_states_eval()
self.config = config
def compile(self, model, optimizer):
super().compile(model, optimizer)
self.binary_crossentropy = tf.keras.losses.BinaryCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
self.mse = tf.keras.losses.MeanSquaredError(
reduction=tf.keras.losses.Reduction.NONE
)
self.mae = tf.keras.losses.MeanAbsoluteError(
reduction=tf.keras.losses.Reduction.NONE
)
def _train_step(self, batch):
"""Here we re-define _train_step because apply input_signature make
the training progress slower on my experiment. Note that input_signature
is apply on based_trainer by default.
"""
if self._already_apply_input_signature is False:
self.one_step_forward = tf.function(
self._one_step_forward, experimental_relax_shapes=True
)
self.one_step_evaluate = tf.function(
self._one_step_evaluate, experimental_relax_shapes=True
)
self.one_step_predict = tf.function(
self._one_step_predict, experimental_relax_shapes=True
)
self._already_apply_input_signature = True
# run one_step_forward
self.one_step_forward(batch)
# update counts
self.steps += 1
self.tqdm.update(1)
self._check_train_finish()
def _one_step_evaluate_per_replica(self, batch):
"""One step evaluate per GPU
Tacotron-2 used teacher-forcing when training and evaluation.
So we need pass `training=True` for inference step.
"""
outputs = self._model(**batch, training=True)
_, dict_metrics_losses = self.compute_per_example_losses(batch, outputs)
self.update_eval_metrics(dict_metrics_losses)
def _one_step_predict_per_replica(self, batch):
"""One step predict per GPU
Tacotron-2 used teacher-forcing when training and evaluation.
So we need pass `training=True` for inference step.
"""
outputs = self._model(**batch, training=True)
return outputs
def compute_per_example_losses(self, batch, outputs):
"""Compute per example losses and return dict_metrics_losses
Note that all element of the loss MUST has a shape [batch_size] and
the keys of dict_metrics_losses MUST be in self.list_metrics_name.
Args:
batch: dictionary batch input return from dataloader
outputs: outputs of the model
Returns:
per_example_losses: per example losses for each GPU, shape [B]
dict_metrics_losses: dictionary loss.
"""
(
decoder_output,
post_mel_outputs,
stop_token_predictions,
alignment_historys,
) = outputs
mel_loss_before = calculate_3d_loss(
batch["mel_gts"], decoder_output, loss_fn=self.mae
)
mel_loss_after = calculate_3d_loss(
batch["mel_gts"], post_mel_outputs, loss_fn=self.mae
)
# calculate stop_loss
max_mel_length = (
tf.reduce_max(batch["mel_lengths"])
if self.config["use_fixed_shapes"] is False
else [self.config["max_mel_length"]]
)
stop_gts = tf.expand_dims(
tf.range(tf.reduce_max(max_mel_length), dtype=tf.int32), 0
) # [1, max_len]
stop_gts = tf.tile(
stop_gts, [tf.shape(batch["mel_lengths"])[0], 1]
) # [B, max_len]
stop_gts = tf.cast(
tf.math.greater_equal(stop_gts, tf.expand_dims(batch["mel_lengths"], 1)),
tf.float32,
)
stop_token_loss = calculate_2d_loss(
stop_gts, stop_token_predictions, loss_fn=self.binary_crossentropy
)
# calculate guided attention loss.
attention_masks = tf.cast(
tf.math.not_equal(batch["g_attentions"], -1.0), tf.float32
)
loss_att = tf.reduce_sum(
tf.abs(alignment_historys * batch["g_attentions"]) * attention_masks,
axis=[1, 2],
)
loss_att /= tf.reduce_sum(attention_masks, axis=[1, 2])
per_example_losses = (
stop_token_loss + mel_loss_before + mel_loss_after + loss_att
)
dict_metrics_losses = {
"stop_token_loss": stop_token_loss,
"mel_loss_before": mel_loss_before,
"mel_loss_after": mel_loss_after,
"guided_attention_loss": loss_att,
}
return per_example_losses, dict_metrics_losses
def generate_and_save_intermediate_result(self, batch):
"""Generate and save intermediate result."""
import matplotlib.pyplot as plt
# predict with tf.function for faster.
outputs = self.one_step_predict(batch)
(
decoder_output,
mel_outputs,
stop_token_predictions,
alignment_historys,
) = outputs
mel_gts = batch["mel_gts"]
utt_ids = batch["utt_ids"]
# convert to tensor.
# here we just take a sample at first replica.
try:
mels_before = decoder_output.values[0].numpy()
mels_after = mel_outputs.values[0].numpy()
mel_gts = mel_gts.values[0].numpy()
alignment_historys = alignment_historys.values[0].numpy()
utt_ids = utt_ids.values[0].numpy()
except Exception:
mels_before = decoder_output.numpy()
mels_after = mel_outputs.numpy()
mel_gts = mel_gts.numpy()
alignment_historys = alignment_historys.numpy()
utt_ids = utt_ids.numpy()
# check directory
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
if not os.path.exists(dirname):
os.makedirs(dirname)
for idx, (mel_gt, mel_before, mel_after, alignment_history) in enumerate(
zip(mel_gts, mels_before, mels_after, alignment_historys), 0
):
mel_gt = tf.reshape(mel_gt, (-1, 80)).numpy() # [length, 80]
mel_before = tf.reshape(mel_before, (-1, 80)).numpy() # [length, 80]
mel_after = tf.reshape(mel_after, (-1, 80)).numpy() # [length, 80]
# plot figure and save it
utt_id = utt_ids[idx]
figname = os.path.join(dirname, f"{utt_id}.png")
fig = plt.figure(figsize=(10, 8))
ax1 = fig.add_subplot(311)
ax2 = fig.add_subplot(312)
ax3 = fig.add_subplot(313)
im = ax1.imshow(np.rot90(mel_gt), aspect="auto", interpolation="none")
ax1.set_title("Target Mel-Spectrogram")
fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax1)
ax2.set_title(f"Predicted Mel-before-Spectrogram @ {self.steps} steps")
im = ax2.imshow(np.rot90(mel_before), aspect="auto", interpolation="none")
fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax2)
ax3.set_title(f"Predicted Mel-after-Spectrogram @ {self.steps} steps")
im = ax3.imshow(np.rot90(mel_after), aspect="auto", interpolation="none")
fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax3)
plt.tight_layout()
plt.savefig(figname)
plt.close()
# plot alignment
figname = os.path.join(dirname, f"{idx}_alignment.png")
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.set_title(f"Alignment @ {self.steps} steps")
im = ax.imshow(
alignment_history, aspect="auto", origin="lower", interpolation="none"
)
fig.colorbar(im, ax=ax)
xlabel = "Decoder timestep"
plt.xlabel(xlabel)
plt.ylabel("Encoder timestep")
plt.tight_layout()
plt.savefig(figname)
plt.close()
def main():
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train FastSpeech (See detail in tensorflow_tts/bin/train-fastspeech.py)"
)
parser.add_argument(
"--train-dir",
default=None,
type=str,
help="directory including training data. ",
)
parser.add_argument(
"--dev-dir",
default=None,
type=str,
help="directory including development data. ",
)
parser.add_argument(
"--use-norm", default=1, type=int, help="usr norm-mels for train or raw."
)
parser.add_argument(
"--outdir", type=str, required=True, help="directory to save checkpoints."
)
parser.add_argument(
"--config", type=str, required=True, help="yaml format configuration file."
)
parser.add_argument(
"--resume",
default="",
type=str,
nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
parser.add_argument(
"--mixed_precision",
default=0,
type=int,
help="using mixed precision for generator or not.",
)
parser.add_argument(
"--pretrained",
default="",
type=str,
nargs="?",
help="pretrained weights .h5 file to load weights from. Auto-skips non-matching layers",
)
parser.add_argument(
"--use-fal",
default=0,
type=int,
help="Use forced alignment guided attention loss or regular",
)
args = parser.parse_args()
# return strategy
STRATEGY = return_strategy()
# set mixed precision config
if args.mixed_precision == 1:
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True})
args.mixed_precision = bool(args.mixed_precision)
args.use_norm = bool(args.use_norm)
args.use_fal = bool(args.use_fal)
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# check arguments
if args.train_dir is None:
raise ValueError("Please specify --train-dir")
if args.dev_dir is None:
raise ValueError("Please specify --valid-dir")
# load and save config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
config["version"] = tensorflow_tts.__version__
# get dataset
if config["remove_short_samples"]:
mel_length_threshold = config["mel_length_threshold"]
else:
mel_length_threshold = 0
if config["format"] == "npy":
charactor_query = "*-ids.npy"
mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy"
align_query = "*-alignment.npy" if args.use_fal is True else ""
charactor_load_fn = np.load
mel_load_fn = np.load
else:
raise ValueError("Only npy are supported.")
train_dataset = CharactorMelDataset(
dataset=config["tacotron2_params"]["dataset"],
root_dir=args.train_dir,
charactor_query=charactor_query,
mel_query=mel_query,
charactor_load_fn=charactor_load_fn,
mel_load_fn=mel_load_fn,
mel_length_threshold=mel_length_threshold,
reduction_factor=config["tacotron2_params"]["reduction_factor"],
use_fixed_shapes=config["use_fixed_shapes"],
align_query=align_query,
)
# update max_mel_length and max_char_length to config
config.update({"max_mel_length": int(train_dataset.max_mel_length)})
config.update({"max_char_length": int(train_dataset.max_char_length)})
with open(os.path.join(args.outdir, "config.yml"), "w") as f:
yaml.dump(config, f, Dumper=yaml.Dumper)
for key, value in config.items():
logging.info(f"{key} = {value}")
train_dataset = train_dataset.create(
is_shuffle=config["is_shuffle"],
allow_cache=config["allow_cache"],
batch_size=config["batch_size"]
* STRATEGY.num_replicas_in_sync
* config["gradient_accumulation_steps"],
)
valid_dataset = CharactorMelDataset(
dataset=config["tacotron2_params"]["dataset"],
root_dir=args.dev_dir,
charactor_query=charactor_query,
mel_query=mel_query,
charactor_load_fn=charactor_load_fn,
mel_load_fn=mel_load_fn,
mel_length_threshold=mel_length_threshold,
reduction_factor=config["tacotron2_params"]["reduction_factor"],
use_fixed_shapes=False, # don't need apply fixed shape for evaluation.
align_query=align_query,
).create(
is_shuffle=config["is_shuffle"],
allow_cache=config["allow_cache"],
batch_size=config["batch_size"] * STRATEGY.num_replicas_in_sync,
)
# define trainer
trainer = Tacotron2Trainer(
config=config,
strategy=STRATEGY,
steps=0,
epochs=0,
is_mixed_precision=args.mixed_precision,
)
with STRATEGY.scope():
# define model.
tacotron_config = Tacotron2Config(**config["tacotron2_params"])
tacotron2 = TFTacotron2(config=tacotron_config, name="tacotron2")
tacotron2._build()
tacotron2.summary()
if len(args.pretrained) > 1:
tacotron2.load_weights(args.pretrained, by_name=True, skip_mismatch=True)
logging.info(
f"Successfully loaded pretrained weight from {args.pretrained}."
)
# AdamW for tacotron2
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=config["optimizer_params"]["initial_learning_rate"],
decay_steps=config["optimizer_params"]["decay_steps"],
end_learning_rate=config["optimizer_params"]["end_learning_rate"],
)
learning_rate_fn = WarmUp(
initial_learning_rate=config["optimizer_params"]["initial_learning_rate"],
decay_schedule_fn=learning_rate_fn,
warmup_steps=int(
config["train_max_steps"]
* config["optimizer_params"]["warmup_proportion"]
),
)
optimizer = AdamWeightDecay(
learning_rate=learning_rate_fn,
weight_decay_rate=config["optimizer_params"]["weight_decay"],
beta_1=0.9,
beta_2=0.98,
epsilon=1e-6,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
)
_ = optimizer.iterations
# compile trainer
trainer.compile(model=tacotron2, optimizer=optimizer)
# start training
try:
trainer.fit(
train_dataset,
valid_dataset,
saved_path=os.path.join(config["outdir"], "checkpoints/"),
resume=args.resume,
)
except KeyboardInterrupt:
trainer.save_checkpoint()
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
main()