-
Notifications
You must be signed in to change notification settings - Fork 816
/
Copy pathaudio_mel_dataset.py
executable file
·187 lines (159 loc) · 5.92 KB
/
audio_mel_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset modules."""
import logging
import os
import numpy as np
import tensorflow as tf
from tensorflow_tts.datasets.abstract_dataset import AbstractDataset
from tensorflow_tts.utils import find_files
class AudioMelDataset(AbstractDataset):
"""Tensorflow Audio Mel dataset."""
def __init__(
self,
root_dir,
audio_query="*-wave.npy",
mel_query="*-raw-feats.npy",
audio_load_fn=np.load,
mel_load_fn=np.load,
audio_length_threshold=0,
mel_length_threshold=0,
):
"""Initialize dataset.
Args:
root_dir (str): Root directory including dumped files.
audio_query (str): Query to find audio files in root_dir.
mel_query (str): Query to find feature files in root_dir.
audio_load_fn (func): Function to load audio file.
mel_load_fn (func): Function to load feature file.
audio_length_threshold (int): Threshold to remove short audio files.
mel_length_threshold (int): Threshold to remove short feature files.
return_utt_id (bool): Whether to return the utterance id with arrays.
"""
# find all of audio and mel files.
audio_files = sorted(find_files(root_dir, audio_query))
mel_files = sorted(find_files(root_dir, mel_query))
# assert the number of files
assert len(audio_files) != 0, f"Not found any audio files in ${root_dir}."
assert len(audio_files) == len(
mel_files
), f"Number of audio and mel files are different ({len(audio_files)} vs {len(mel_files)})."
if ".npy" in audio_query:
suffix = audio_query[1:]
utt_ids = [os.path.basename(f).replace(suffix, "") for f in audio_files]
# set global params
self.utt_ids = utt_ids
self.audio_files = audio_files
self.mel_files = mel_files
self.audio_load_fn = audio_load_fn
self.mel_load_fn = mel_load_fn
self.audio_length_threshold = audio_length_threshold
self.mel_length_threshold = mel_length_threshold
def get_args(self):
return [self.utt_ids]
def generator(self, utt_ids):
for i, utt_id in enumerate(utt_ids):
audio_file = self.audio_files[i]
mel_file = self.mel_files[i]
items = {
"utt_ids": utt_id,
"audio_files": audio_file,
"mel_files": mel_file,
}
yield items
@tf.function
def _load_data(self, items):
audio = tf.numpy_function(np.load, [items["audio_files"]], tf.float32)
mel = tf.numpy_function(np.load, [items["mel_files"]], tf.float32)
items = {
"utt_ids": items["utt_ids"],
"audios": audio,
"mels": mel,
"mel_lengths": len(mel),
"audio_lengths": len(audio),
}
return items
def create(
self,
allow_cache=False,
batch_size=1,
is_shuffle=False,
map_fn=None,
reshuffle_each_iteration=True,
):
"""Create tf.dataset function."""
output_types = self.get_output_dtypes()
datasets = tf.data.Dataset.from_generator(
self.generator, output_types=output_types, args=(self.get_args())
)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
datasets = datasets.with_options(options)
# load dataset
datasets = datasets.map(
lambda items: self._load_data(items), tf.data.experimental.AUTOTUNE
)
datasets = datasets.filter(
lambda x: x["mel_lengths"] > self.mel_length_threshold
)
datasets = datasets.filter(
lambda x: x["audio_lengths"] > self.audio_length_threshold
)
if allow_cache:
datasets = datasets.cache()
if is_shuffle:
datasets = datasets.shuffle(
self.get_len_dataset(),
reshuffle_each_iteration=reshuffle_each_iteration,
)
if batch_size > 1 and map_fn is None:
raise ValueError("map function must define when batch_size > 1.")
if map_fn is not None:
datasets = datasets.map(map_fn, tf.data.experimental.AUTOTUNE)
# define padded shapes
padded_shapes = {
"utt_ids": [],
"audios": [None],
"mels": [None, 80],
"mel_lengths": [],
"audio_lengths": [],
}
# define padded values
padding_values = {
"utt_ids": "",
"audios": 0.0,
"mels": 0.0,
"mel_lengths": 0,
"audio_lengths": 0,
}
datasets = datasets.padded_batch(
batch_size,
padded_shapes=padded_shapes,
padding_values=padding_values,
drop_remainder=True,
)
datasets = datasets.prefetch(tf.data.experimental.AUTOTUNE)
return datasets
def get_output_dtypes(self):
output_types = {
"utt_ids": tf.string,
"audio_files": tf.string,
"mel_files": tf.string,
}
return output_types
def get_len_dataset(self):
return len(self.utt_ids)
def __name__(self):
return "AudioMelDataset"