-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathresnet_main.py
891 lines (757 loc) · 34.6 KB
/
resnet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train a ResNet-50 model on ImageNet on TPU."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
import tensorflow.compat.v2 as tf2
from common import inference_warmup
from common import tpu_profiler_hook
from hyperparameters import common_hparams_flags
from hyperparameters import common_tpu_flags
from hyperparameters import flags_to_params
from hyperparameters import params_dict
from official.resnet import imagenet_input
from official.resnet import lars_util
from official.resnet import resnet_model
from official.resnet.configs import resnet_config
from tensorflow.core.protobuf import rewriter_config_pb2 # pylint: disable=g-direct-tensorflow-import
common_tpu_flags.define_common_tpu_flags()
common_hparams_flags.define_common_hparams_flags()
FLAGS = flags.FLAGS
FAKE_DATA_DIR = 'gs://cloud-tpu-test-datasets/fake_imagenet'
flags.DEFINE_integer(
'resnet_depth', default=None,
help=('Depth of ResNet model to use. Must be one of {18, 34, 50, 101, 152,'
' 200}. ResNet-18 and 34 use the pre-activation residual blocks'
' without bottleneck layers. The other models use pre-activation'
' bottleneck layers. Deeper models require more training time and'
' more memory and may require reducing --train_batch_size to prevent'
' running out of memory.'))
flags.DEFINE_integer(
'num_train_images', default=None, help='Size of training data set.')
flags.DEFINE_integer(
'num_eval_images', default=None, help='Size of evaluation data set.')
flags.DEFINE_integer(
'num_label_classes', default=None, help='Number of classes, at least 2')
flags.DEFINE_string(
'data_format', default=None,
help=('A flag to override the data format used in the model. The value'
' is either channels_first or channels_last. To run the network on'
' CPU or TPU, channels_last should be used. For GPU, channels_first'
' will improve performance.'))
flags.DEFINE_bool(
'transpose_input', default=None,
help='Use TPU double transpose optimization')
flags.DEFINE_bool(
'use_cache', default=None, help=('Enable cache for training input.'))
flags.DEFINE_integer('image_size', None, 'The input image size.')
flags.DEFINE_string(
'dropblock_groups', None,
help=('A string containing comma separated integers indicating ResNet '
'block groups to apply DropBlock. `3,4` means to apply DropBlock to '
'block groups 3 and 4. Use an empty string to not apply DropBlock to '
'any block group.'))
flags.DEFINE_float(
'dropblock_keep_prob', default=None,
help=('keep_prob parameter of DropBlock. Will not be used if '
'dropblock_groups is empty.'))
flags.DEFINE_integer(
'dropblock_size', default=None,
help=('size parameter of DropBlock. Will not be used if dropblock_groups '
'is empty.'))
flags.DEFINE_boolean(
'pre_activation', default=None,
help=('Whether to use pre-activation ResNet (ResNet-v2)'))
flags.DEFINE_string(
'norm_act_layer', default=None,
help='One of {"bn_relu", "evonorm_b0", "evonorm_s0"}.')
flags.DEFINE_integer(
'profile_every_n_steps', default=0,
help=('Number of steps between collecting profiles if larger than 0'))
flags.DEFINE_string(
'mode', default='train_and_eval',
help='One of {"train_and_eval", "train", "eval"}.')
flags.DEFINE_integer(
'steps_per_eval', default=1251,
help=('Controls how often evaluation is performed. Since evaluation is'
' fairly expensive, it is advised to evaluate as infrequently as'
' possible (i.e. up to --train_steps, which evaluates the model only'
' after finishing the entire training regime).'))
flags.DEFINE_integer(
'eval_timeout',
default=None,
help='Maximum seconds between checkpoints before evaluation terminates.')
flags.DEFINE_integer(
'num_parallel_calls', default=None,
help=('Number of parallel threads in CPU for the input pipeline.'
' Recommended value is the number of cores per CPU host.'))
flags.DEFINE_integer(
'num_cores', default=None,
help=('Number of TPU cores in total. For a single TPU device, this is 8'
' because each TPU has 4 chips each with 2 cores.'))
flags.DEFINE_string(
'bigtable_project', None,
'The Cloud Bigtable project. If None, --gcp_project will be used.')
flags.DEFINE_string(
'bigtable_instance', None,
'The Cloud Bigtable instance to load data from.')
flags.DEFINE_string(
'bigtable_table', 'imagenet',
'The Cloud Bigtable table to load data from.')
flags.DEFINE_string(
'bigtable_train_prefix', 'train_',
'The prefix identifying training rows.')
flags.DEFINE_string(
'bigtable_eval_prefix', 'validation_',
'The prefix identifying evaluation rows.')
flags.DEFINE_string(
'bigtable_column_family', 'tfexample',
'The column family storing TFExamples.')
flags.DEFINE_string(
'bigtable_column_qualifier', 'example',
'The column name storing TFExamples.')
flags.DEFINE_string(
'export_dir',
default=None,
help=('The directory where the exported SavedModel will be stored.'))
flags.DEFINE_bool(
'export_to_tpu', default=False,
help=('Whether to export additional metagraph with "serve, tpu" tags'
' in addition to "serve" only metagraph.'))
flags.DEFINE_float(
'base_learning_rate', default=None,
help=('Base learning rate when train batch size is 256.'))
flags.DEFINE_float(
'momentum', default=None,
help=('Momentum parameter used in the MomentumOptimizer.'))
flags.DEFINE_float(
'weight_decay', default=None,
help=('Weight decay coefficiant for l2 regularization.'))
flags.DEFINE_float(
'label_smoothing', default=None,
help=('Label smoothing parameter used in the softmax_cross_entropy'))
flags.DEFINE_bool('enable_lars',
default=None,
help=('Enable LARS optimizer for large batch training.'))
flags.DEFINE_float('poly_rate', default=None,
help=('Set LARS/Poly learning rate.'))
flags.DEFINE_bool(
'use_async_checkpointing', default=None, help=('Enable async checkpoint'))
flags.DEFINE_integer('log_step_count_steps', 64, 'The number of steps at '
'which the global step information is logged.')
flags.DEFINE_string(
'augment_name', default=None,
help='`string` that is the name of the augmentation method'
'to apply to the image. `autoaugment` if AutoAugment is to be used or'
'`randaugment` if RandAugment is to be used. If the value is `None` no'
'augmentation method will be applied applied. See autoaugment.py for '
'more details.')
flags.DEFINE_integer(
'randaug_num_layers', default=None,
help='If RandAug is used, what should the number of layers be.'
'See autoaugment.py for detailed description.')
flags.DEFINE_integer(
'randaug_magnitude', default=None,
help='If RandAug is used, what should the magnitude be. '
'See autoaugment.py for detailed description.')
# Inference configuration.
flags.DEFINE_bool(
'add_warmup_requests', False,
'Whether to add warmup requests into the export saved model dir,'
'especially for TPU inference.')
flags.DEFINE_string('model_name', 'resnet',
'Serving model name used for the model server.')
flags.DEFINE_multi_integer(
'inference_batch_sizes', [8],
'Known inference batch sizes used to warm up for each core.')
flags.DEFINE_bool(
'export_moving_average', False,
'Whether to export model using moving average variables.')
# The input tensor is in the range of [0, 255], we need to scale them to the
# range of [0, 1]
MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255]
STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255]
def get_lr_schedule(train_steps, num_train_images, train_batch_size):
"""learning rate schedule."""
steps_per_epoch = np.floor(num_train_images / train_batch_size)
train_epochs = train_steps / steps_per_epoch
return [ # (multiplier, epoch to start) tuples
(1.0, np.floor(5 / 90 * train_epochs)),
(0.1, np.floor(30 / 90 * train_epochs)),
(0.01, np.floor(60 / 90 * train_epochs)),
(0.001, np.floor(80 / 90 * train_epochs))
]
def learning_rate_schedule(params, current_epoch):
"""Handles linear scaling rule, gradual warmup, and LR decay.
The learning rate starts at 0, then it increases linearly per step.
After 5 epochs we reach the base learning rate (scaled to account
for batch size).
After 30, 60 and 80 epochs the learning rate is divided by 10.
After 90 epochs training stops and the LR is set to 0. This ensures
that we train for exactly 90 epochs for reproducibility.
Args:
params: Python dict containing parameters for this run.
current_epoch: `Tensor` for current epoch.
Returns:
A scaled `Tensor` for current learning rate.
"""
scaled_lr = params['base_learning_rate'] * (
params['train_batch_size'] / 256.0)
lr_schedule = get_lr_schedule(
train_steps=params['train_steps'],
num_train_images=params['num_train_images'],
train_batch_size=params['train_batch_size'])
decay_rate = (scaled_lr * lr_schedule[0][0] *
current_epoch / lr_schedule[0][1])
for mult, start_epoch in lr_schedule:
decay_rate = tf.where(current_epoch < start_epoch,
decay_rate, scaled_lr * mult)
return decay_rate
def get_ema_vars():
"""Get all exponential moving average (ema) variables."""
ema_vars = tf.trainable_variables() + tf.get_collection('moving_vars')
for v in tf.global_variables():
# We maintain mva for batch norm moving mean and variance as well.
if 'moving_mean' in v.name or 'moving_variance' in v.name:
ema_vars.append(v)
return list(set(ema_vars))
def get_pretrained_variables_to_restore(checkpoint_path,
load_moving_average=False):
"""Gets veriables_to_restore mapping from pretrained checkpoint.
Args:
checkpoint_path: String. Path of checkpoint.
load_moving_average: Boolean, whether load moving average variables to
replace variables.
Returns:
Mapping of variables to restore.
"""
checkpoint_reader = tf.train.load_checkpoint(checkpoint_path)
variable_shape_map = checkpoint_reader.get_variable_to_shape_map()
variables_to_restore = {}
ema_vars = get_ema_vars()
for v in tf.global_variables():
# Skip variables if they are in excluded scopes.
is_excluded = False
for scope in ['global_step', 'ExponentialMovingAverage']:
if scope in v.op.name:
is_excluded = True
break
if is_excluded:
tf.logging.info('Exclude [%s] from loading from checkpoint.', v.op.name)
continue
variable_name_ckpt = v.op.name
if load_moving_average and v in ema_vars:
# To load moving average variables into non-moving version for
# fine-tuning, maps variables here manually.
variable_name_ckpt = v.op.name + '/ExponentialMovingAverage'
if variable_name_ckpt not in variable_shape_map:
tf.logging.info(
'Skip init [%s] from [%s] as it is not in the checkpoint',
v.op.name, variable_name_ckpt)
continue
variables_to_restore[variable_name_ckpt] = v
tf.logging.info('Init variable [%s] from [%s] in ckpt', v.op.name,
variable_name_ckpt)
return variables_to_restore
def resnet_model_fn(features, labels, mode, params):
"""The model_fn for ResNet to be used with TPUEstimator.
Args:
features: `Tensor` of batched images. If transpose_input is enabled, it
is transposed to device layout and reshaped to 1D tensor.
labels: `Tensor` of labels for the data samples
mode: one of `tf.estimator.ModeKeys.{TRAIN,EVAL,PREDICT}`
params: `dict` of parameters passed to the model from the TPUEstimator,
`params['batch_size']` is always provided and should be used as the
effective batch size.
Returns:
A `TPUEstimatorSpec` for the model
"""
is_training = (mode == tf_estimator.ModeKeys.TRAIN)
if isinstance(features, dict):
features = features['feature']
# In most cases, the default data format NCHW instead of NHWC should be
# used for a significant performance boost on GPU/TPU. NHWC should be used
# only if the network needs to be run on CPU since the pooling operations
# are only supported on NHWC.
if params['data_format'] == 'channels_first':
assert not params['transpose_input'] # channels_first only for GPU
features = tf.transpose(features, [0, 3, 1, 2])
if params['transpose_input'] and mode != tf_estimator.ModeKeys.PREDICT:
image_size = tf.sqrt(tf.shape(features)[0] / (3 * tf.shape(labels)[0]))
features = tf.reshape(features, [image_size, image_size, 3, -1])
features = tf.transpose(features, [3, 0, 1, 2]) # HWCN to NHWC
# Normalize the image to zero mean and unit variance.
features -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=features.dtype)
features /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=features.dtype)
# DropBlock keep_prob for the 4 block groups of ResNet architecture.
# None means applying no DropBlock at the corresponding block group.
dropblock_keep_probs = [None] * 4
if params['dropblock_groups']:
# Scheduled keep_prob for DropBlock.
train_steps = tf.cast(params['train_steps'], tf.float32)
current_step = tf.cast(tf.train.get_global_step(), tf.float32)
current_ratio = current_step / train_steps
dropblock_keep_prob = (1 - current_ratio * (
1 - params['dropblock_keep_prob']))
# Computes DropBlock keep_prob for different block groups of ResNet.
dropblock_groups = [int(x) for x in params['dropblock_groups'].split(',')]
for block_group in dropblock_groups:
if block_group < 1 or block_group > 4:
raise ValueError(
'dropblock_groups should be a comma separated list of integers '
'between 1 and 4 (dropblcok_groups: {}).'
.format(params['dropblock_groups']))
dropblock_keep_probs[block_group - 1] = 1 - (
(1 - dropblock_keep_prob) / 4.0**(4 - block_group))
has_moving_average_decay = (params['moving_average_decay'] > 0)
if has_moving_average_decay and params['bn_momentum'] > 0:
raise ValueError(
'Should not use exponential moving average and batch norm momentum')
# This nested function allows us to avoid duplicating the logic which
# builds the network, for different values of --precision.
def build_network():
network = resnet_model.resnet(
resnet_depth=params['resnet_depth'],
num_classes=params['num_label_classes'],
dropblock_size=params['dropblock_size'],
dropblock_keep_probs=dropblock_keep_probs,
pre_activation=params['pre_activation'],
norm_act_layer=params['norm_act_layer'],
data_format=params['data_format'],
se_ratio=params['se_ratio'],
drop_connect_rate=params['drop_connect_rate'],
use_resnetd_stem=params['use_resnetd_stem'],
resnetd_shortcut=params['resnetd_shortcut'],
replace_stem_max_pool=params['replace_stem_max_pool'],
dropout_rate=params['dropout_rate'],
bn_momentum=params['bn_momentum'])
return network(
inputs=features, is_training=(mode == tf_estimator.ModeKeys.TRAIN))
if params['precision'] == 'bfloat16':
with tf.tpu.bfloat16_scope():
logits = build_network()
logits = tf.cast(logits, tf.float32)
elif params['precision'] == 'float32':
logits = build_network()
if mode == tf_estimator.ModeKeys.PREDICT:
scaffold_fn = None
if FLAGS.export_moving_average:
# If the model is trained with moving average decay, to match evaluation
# metrics, we need to export the model using moving average variables.
restore_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)
variables_to_restore = get_pretrained_variables_to_restore(
restore_checkpoint, load_moving_average=True)
tf.logging.info('Restoring from the latest checkpoint: %s',
restore_checkpoint)
tf.logging.info(str(variables_to_restore))
def restore_scaffold():
saver = tf.train.Saver(variables_to_restore)
return tf.train.Scaffold(saver=saver)
scaffold_fn = restore_scaffold
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
return tf_estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
export_outputs={
'classify': tf_estimator.export.PredictOutput(predictions)},
scaffold=scaffold_fn)
# If necessary, in the model_fn, use params['batch_size'] instead the batch
# size flags (--train_batch_size or --eval_batch_size).
batch_size = params['batch_size'] # pylint: disable=unused-variable
# Calculate loss, which includes softmax cross entropy and L2 regularization.
one_hot_labels = tf.one_hot(labels, params['num_label_classes'])
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits,
onehot_labels=one_hot_labels,
label_smoothing=params['label_smoothing'])
# Add weight decay to the loss for non-batch-normalization variables.
if params['enable_lars']:
loss = cross_entropy
else:
loss = cross_entropy + params['weight_decay'] * tf.add_n([
tf.nn.l2_loss(v)
for v in tf.trainable_variables()
if 'batch_normalization' not in v.name and 'evonorm' not in v.name
])
global_step = tf.train.get_global_step()
if has_moving_average_decay:
ema = tf.train.ExponentialMovingAverage(
decay=params['moving_average_decay'], num_updates=global_step)
ema_vars = get_ema_vars()
host_call = None
if mode == tf_estimator.ModeKeys.TRAIN:
# Compute the current epoch and associated learning rate from global_step.
global_step = tf.train.get_global_step()
steps_per_epoch = params['num_train_images'] / params['train_batch_size']
current_epoch = (tf.cast(global_step, tf.float32) /
steps_per_epoch)
# LARS is a large batch optimizer. LARS enables higher accuracy at batch 16K
# and larger batch sizes.
if params['enable_lars']:
learning_rate = 0.0
optimizer = lars_util.init_lars_optimizer(current_epoch, params)
else:
learning_rate = learning_rate_schedule(params, current_epoch)
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=params['momentum'],
use_nesterov=True)
if params['use_tpu']:
# When using TPU, wrap the optimizer with CrossShardOptimizer which
# handles synchronization details between different TPU cores. To the
# user, this should look like regular synchronous training.
optimizer = tf.tpu.CrossShardOptimizer(optimizer)
# Batch normalization requires UPDATE_OPS to be added as a dependency to
# the train operation.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
if has_moving_average_decay:
with tf.control_dependencies([train_op]):
train_op = ema.apply(ema_vars)
if not params['skip_host_call']:
def host_call_fn(gs, loss, lr, ce):
"""Training host call. Creates scalar summaries for training metrics.
This function is executed on the CPU and should not directly reference
any Tensors in the rest of the `model_fn`. To pass Tensors from the
model to the `metric_fn`, provide as part of the `host_call`. See
https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimatorSpec
for more information.
Arguments should match the list of `Tensor` objects passed as the second
element in the tuple passed to `host_call`.
Args:
gs: `Tensor with shape `[batch]` for the global_step
loss: `Tensor` with shape `[batch]` for the training loss.
lr: `Tensor` with shape `[batch]` for the learning_rate.
ce: `Tensor` with shape `[batch]` for the current_epoch.
Returns:
List of summary ops to run on the CPU host.
"""
gs = gs[0]
# Host call fns are executed params['iterations_per_loop'] times after
# one TPU loop is finished, setting max_queue value to the same as
# number of iterations will make the summary writer only flush the data
# to storage once per loop.
with tf2.summary.create_file_writer(
FLAGS.model_dir,
max_queue=params['iterations_per_loop']).as_default():
with tf2.summary.record_if(True):
tf2.summary.scalar('loss', loss[0], step=gs)
tf2.summary.scalar('learning_rate', lr[0], step=gs)
tf2.summary.scalar('current_epoch', ce[0], step=gs)
return tf.summary.all_v2_summary_ops()
# To log the loss, current learning rate, and epoch for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
gs_t = tf.reshape(global_step, [1])
loss_t = tf.reshape(loss, [1])
lr_t = tf.reshape(learning_rate, [1])
ce_t = tf.reshape(current_epoch, [1])
host_call = (host_call_fn, [gs_t, loss_t, lr_t, ce_t])
else:
train_op = None
eval_metrics = None
if mode == tf_estimator.ModeKeys.EVAL:
def metric_fn(labels, logits):
"""Evaluation metric function. Evaluates accuracy.
This function is executed on the CPU and should not directly reference
any Tensors in the rest of the `model_fn`. To pass Tensors from the model
to the `metric_fn`, provide as part of the `eval_metrics`. See
https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimatorSpec
for more information.
Arguments should match the list of `Tensor` objects passed as the second
element in the tuple passed to `eval_metrics`.
Args:
labels: `Tensor` with shape `[batch]`.
logits: `Tensor` with shape `[batch, num_classes]`.
Returns:
A dict of the metrics to return from evaluation.
"""
predictions = tf.argmax(logits, axis=1)
top_1_accuracy = tf.metrics.accuracy(labels, predictions)
in_top_5 = tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32)
top_5_accuracy = tf.metrics.mean(in_top_5)
return {
'top_1_accuracy': top_1_accuracy,
'top_5_accuracy': top_5_accuracy,
}
eval_metrics = (metric_fn, [labels, logits])
# Prepares scaffold_fn if needed.
scaffold_fn = None
restore_vars_dict = None
if not is_training and has_moving_average_decay:
# Load moving average variables for eval.
restore_vars_dict = ema.variables_to_restore(ema_vars)
def eval_scaffold():
saver = tf.train.Saver(restore_vars_dict)
return tf.train.Scaffold(saver=saver)
scaffold_fn = eval_scaffold
return tf_estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
host_call=host_call,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
def _verify_non_empty_string(value, field_name):
"""Ensures that a given proposed field value is a non-empty string.
Args:
value: proposed value for the field.
field_name: string name of the field, e.g. `project`.
Returns:
The given value, provided that it passed the checks.
Raises:
ValueError: the value is not a string, or is a blank string.
"""
if not isinstance(value, str):
raise ValueError(
'Bigtable parameter "%s" must be a string.' % field_name)
if not value:
raise ValueError(
'Bigtable parameter "%s" must be non-empty.' % field_name)
return value
def _select_tables_from_flags():
"""Construct training and evaluation Bigtable selections from flags.
Returns:
[training_selection, evaluation_selection]
"""
project = _verify_non_empty_string(
FLAGS.bigtable_project or FLAGS.gcp_project,
'project')
instance = _verify_non_empty_string(FLAGS.bigtable_instance, 'instance')
table = _verify_non_empty_string(FLAGS.bigtable_table, 'table')
train_prefix = _verify_non_empty_string(FLAGS.bigtable_train_prefix,
'train_prefix')
eval_prefix = _verify_non_empty_string(FLAGS.bigtable_eval_prefix,
'eval_prefix')
column_family = _verify_non_empty_string(FLAGS.bigtable_column_family,
'column_family')
column_qualifier = _verify_non_empty_string(FLAGS.bigtable_column_qualifier,
'column_qualifier')
return [ # pylint: disable=g-complex-comprehension
imagenet_input.BigtableSelection(
project=project,
instance=instance,
table=table,
prefix=p,
column_family=column_family,
column_qualifier=column_qualifier)
for p in (train_prefix, eval_prefix)
]
def main(unused_argv):
params = params_dict.ParamsDict(
resnet_config.RESNET_CFG, resnet_config.RESNET_RESTRICTIONS)
params = params_dict.override_params_dict(
params, FLAGS.config_file, is_strict=True)
params = params_dict.override_params_dict(
params, FLAGS.params_override, is_strict=True)
params = flags_to_params.override_params_from_input_flags(params, FLAGS)
params.validate()
params.lock()
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
FLAGS.tpu if (FLAGS.tpu or params.use_tpu) else '',
zone=FLAGS.tpu_zone,
project=FLAGS.gcp_project)
if params.use_async_checkpointing:
save_checkpoints_steps = None
else:
save_checkpoints_steps = max(5000, params.iterations_per_loop)
config = tf_estimator.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.model_dir,
save_checkpoints_steps=save_checkpoints_steps,
log_step_count_steps=FLAGS.log_step_count_steps,
session_config=tf.ConfigProto(
graph_options=tf.GraphOptions(
rewrite_options=rewriter_config_pb2.RewriterConfig(
disable_meta_optimizer=True))),
tpu_config=tf_estimator.tpu.TPUConfig(
iterations_per_loop=params.iterations_per_loop,
num_shards=params.num_cores,
per_host_input_for_training=tf_estimator.tpu.InputPipelineConfig
.PER_HOST_V2)) # pylint: disable=line-too-long
resnet_classifier = tf_estimator.tpu.TPUEstimator(
use_tpu=params.use_tpu,
model_fn=resnet_model_fn,
config=config,
params=params.as_dict(),
train_batch_size=params.train_batch_size,
eval_batch_size=params.eval_batch_size,
export_to_tpu=FLAGS.export_to_tpu)
assert (params.precision == 'bfloat16' or
params.precision == 'float32'), (
'Invalid value for precision parameter; '
'must be bfloat16 or float32.')
tf.logging.info('Precision: %s', params.precision)
use_bfloat16 = params.precision == 'bfloat16'
# Input pipelines are slightly different (with regards to shuffling and
# preprocessing) between training and evaluation.
if FLAGS.bigtable_instance:
tf.logging.info('Using Bigtable dataset, table %s', FLAGS.bigtable_table)
select_train, select_eval = _select_tables_from_flags()
imagenet_train, imagenet_eval = [
imagenet_input.ImageNetBigtableInput( # pylint: disable=g-complex-comprehension
is_training=is_training,
use_bfloat16=use_bfloat16,
transpose_input=params.transpose_input,
selection=selection,
augment_name=FLAGS.augment_name,
randaug_num_layers=FLAGS.randaug_num_layers,
randaug_magnitude=FLAGS.randaug_magnitude)
for (is_training, selection) in [(True,
select_train), (False, select_eval)]
]
else:
if FLAGS.data_dir == FAKE_DATA_DIR:
tf.logging.info('Using fake dataset.')
else:
tf.logging.info('Using dataset: %s', FLAGS.data_dir)
imagenet_train, imagenet_eval = [
imagenet_input.ImageNetInput( # pylint: disable=g-complex-comprehension
is_training=is_training,
data_dir=FLAGS.data_dir,
transpose_input=params.transpose_input,
cache=params.use_cache and is_training,
image_size=params.image_size,
num_parallel_calls=params.num_parallel_calls,
include_background_label=(params.num_label_classes == 1001),
use_bfloat16=use_bfloat16,
augment_name=FLAGS.augment_name,
randaug_num_layers=FLAGS.randaug_num_layers,
randaug_magnitude=FLAGS.randaug_magnitude)
for is_training in [True, False]
]
steps_per_epoch = params.num_train_images // params.train_batch_size
eval_steps = params.num_eval_images // params.eval_batch_size
if FLAGS.mode == 'eval':
# Run evaluation when there's a new checkpoint
for ckpt in tf.train.checkpoints_iterator(
FLAGS.model_dir, timeout=FLAGS.eval_timeout):
tf.logging.info('Starting to evaluate.')
try:
start_timestamp = time.time() # This time will include compilation time
eval_results = resnet_classifier.evaluate(
input_fn=imagenet_eval.input_fn,
steps=eval_steps,
checkpoint_path=ckpt)
elapsed_time = int(time.time() - start_timestamp)
tf.logging.info('Eval results: %s. Elapsed seconds: %d',
eval_results, elapsed_time)
# Terminate eval job when final checkpoint is reached
current_step = int(os.path.basename(ckpt).split('-')[1])
if current_step >= params.train_steps:
tf.logging.info(
'Evaluation finished after training step %d', current_step)
break
except tf.errors.NotFoundError:
# Since the coordinator is on a different job than the TPU worker,
# sometimes the TPU worker does not finish initializing until long after
# the CPU job tells it to start evaluating. In this case, the checkpoint
# file could have been deleted already.
tf.logging.info(
'Checkpoint %s no longer exists, skipping checkpoint', ckpt)
else: # FLAGS.mode == 'train' or FLAGS.mode == 'train_and_eval'
try:
current_step = tf.train.load_variable(FLAGS.model_dir,
tf.GraphKeys.GLOBAL_STEP)
except (TypeError, ValueError, tf.errors.NotFoundError):
current_step = 0
steps_per_epoch = params.num_train_images // params.train_batch_size
tf.logging.info('Training for %d steps (%.2f epochs in total). Current'
' step %d.',
params.train_steps,
params.train_steps / steps_per_epoch,
current_step)
start_timestamp = time.time() # This time will include compilation time
if FLAGS.mode == 'train':
hooks = []
if params.use_async_checkpointing:
try:
from tensorflow.contrib.tpu.python.tpu import async_checkpoint # pylint: disable=g-import-not-at-top
except ImportError as e:
logging.exception(
'Async checkpointing is not supported in TensorFlow 2.x')
raise e
hooks.append(
async_checkpoint.AsyncCheckpointSaverHook(
checkpoint_dir=FLAGS.model_dir,
save_steps=max(5000, params.iterations_per_loop)))
if FLAGS.profile_every_n_steps > 0:
hooks.append(
tpu_profiler_hook.TPUProfilerHook(
save_steps=FLAGS.profile_every_n_steps,
output_dir=FLAGS.model_dir, tpu=FLAGS.tpu)
)
resnet_classifier.train(
input_fn=imagenet_train.input_fn,
max_steps=params.train_steps,
hooks=hooks)
else:
assert FLAGS.mode == 'train_and_eval'
while current_step < params.train_steps:
# Train for up to steps_per_eval number of steps.
# At the end of training, a checkpoint will be written to --model_dir.
next_checkpoint = min(current_step + FLAGS.steps_per_eval,
params.train_steps)
resnet_classifier.train(
input_fn=imagenet_train.input_fn, max_steps=next_checkpoint)
current_step = next_checkpoint
tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
next_checkpoint, int(time.time() - start_timestamp))
# Evaluate the model on the most recent model in --model_dir.
# Since evaluation happens in batches of --eval_batch_size, some images
# may be excluded modulo the batch size. As long as the batch size is
# consistent, the evaluated images are also consistent.
tf.logging.info('Starting to evaluate.')
eval_results = resnet_classifier.evaluate(
input_fn=imagenet_eval.input_fn,
steps=params.num_eval_images // params.eval_batch_size)
tf.logging.info('Eval results at step %d: %s',
next_checkpoint, eval_results)
elapsed_time = int(time.time() - start_timestamp)
tf.logging.info('Finished training up to step %d. Elapsed seconds %d.',
params.train_steps, elapsed_time)
if FLAGS.export_dir is not None:
# The guide to serve a exported TensorFlow model is at:
# https://www.tensorflow.org/serving/serving_basic
tf.logging.info('Starting to export model.')
export_path = resnet_classifier.export_saved_model(
export_dir_base=FLAGS.export_dir,
serving_input_receiver_fn=imagenet_input.image_serving_input_fn)
if FLAGS.add_warmup_requests:
inference_warmup.write_warmup_requests(
export_path,
FLAGS.model_name,
params.image_size,
batch_sizes=FLAGS.inference_batch_sizes,
image_format='JPEG')
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.disable_v2_behavior()
app.run(main)