-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
imagenet_resnetrs50_i160.yaml
64 lines (64 loc) · 1.49 KB
/
imagenet_resnetrs50_i160.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# ResNet-RS-50 ImageNet classification. 79.1% top-1 accuracy.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
num_classes: 1001
input_size: [160, 160, 3]
backbone:
type: 'resnet'
resnet:
model_id: 50
replace_stem_max_pool: true
resnetd_shortcut: true
se_ratio: 0.25
stem_type: 'v1'
stochastic_depth_drop_rate: 0.0
norm_activation:
activation: 'swish'
norm_momentum: 0.0
use_sync_bn: false
dropout_rate: 0.25
losses:
l2_weight_decay: 0.00004
one_hot: true
label_smoothing: 0.1
train_data:
input_path: 'gs://mlcompass-data/imagenet/imagenet-2012-tfrecord/train*'
is_training: true
global_batch_size: 4096
dtype: 'bfloat16'
aug_type:
type: 'randaug'
randaug:
magnitude: 10
validation_data:
input_path: 'gs://mlcompass-data/imagenet/imagenet-2012-tfrecord/valid*'
is_training: false
global_batch_size: 4096
dtype: 'bfloat16'
drop_remainder: false
trainer:
train_steps: 109200
validation_steps: 13
validation_interval: 312
steps_per_loop: 312
summary_interval: 312
checkpoint_interval: 312
optimizer_config:
ema:
average_decay: 0.9999
optimizer:
type: 'sgd'
sgd:
momentum: 0.9
learning_rate:
type: 'cosine'
cosine:
initial_learning_rate: 1.6
decay_steps: 109200
warmup:
type: 'linear'
linear:
warmup_steps: 1560