-
Notifications
You must be signed in to change notification settings - Fork 4
/
generate_cmlm.py
228 lines (187 loc) · 9.4 KB
/
generate_cmlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
"""
Translate pre-processed data with a trained model.
"""
import torch
import numpy as np
import math
import torch.nn.functional as F
import re
from fairseq import pybleu, options, progress_bar, tasks, tokenizer, utils, strategies
from fairseq.meters import TimeMeter
from fairseq.strategies.strategy_utils import duplicate_encoder_out
def main(args):
assert args.path is not None, '--path required for generation!'
assert not args.sampling or args.nbest == args.beam, \
'--sampling requires --nbest to be equal to --beam'
assert args.replace_unk is None or args.raw_text, \
'--replace-unk requires a raw text dataset (--raw-text)'
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 12000
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
torch.manual_seed(args.seed)
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))
# Set dictionaries
#src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
dict = tgt_dict
# Load decoding strategy
strategy = strategies.setup_strategy(args)
# Load ensemble
print('| loading model(s) from {}'.format(args.path))
models, _ = utils.load_ensemble_for_inference(args.path.split(':'), task, model_arg_overrides=eval(args.model_overrides))
models = [model.cuda() for model in models]
# Optimize ensemble for generation
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.replace_unk)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=utils.resolve_max_positions(
task.max_positions(),
*[model.max_positions() for model in models]
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=8,
num_shards=args.num_shards,
shard_id=args.shard_id,
).next_epoch_itr(shuffle=False)
results = []
scorer = pybleu.PyBleuScorer()
num_sentences = 0
has_target = True
timer = TimeMeter()
with progress_bar.build_progress_bar(args, itr) as t:
translations = generate_batched_itr(t, strategy, models, tgt_dict, length_beam_size=args.length_beam, use_gold_target_len=args.gold_target_len)
for sample_id, src_tokens, target_tokens, hypos in translations:
has_target = target_tokens is not None
target_tokens = target_tokens.int().cpu() if has_target else None
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
else:
src_str = dict.string(src_tokens, args.remove_bpe)
if args.dehyphenate:
src_str = dehyphenate(src_str)
if has_target:
target_str = dict.string(target_tokens, args.remove_bpe, escape_unk=True)
if args.dehyphenate:
target_str = dehyphenate(target_str)
if not args.quiet:
print('S-{}\t{}'.format(sample_id, src_str))
if has_target:
print('T-{}\t{}'.format(sample_id, target_str))
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypos.int().cpu(),
src_str=src_str,
alignment= None,
align_dict=align_dict,
tgt_dict=dict,
remove_bpe=args.remove_bpe,
)
if args.dehyphenate:
hypo_str = dehyphenate(hypo_str)
if not args.quiet:
print('H-{}\t{}'.format(sample_id, hypo_str))
if args.print_alignment:
print('A-{}\t{}'.format(
sample_id,
' '.join(map(lambda x: str(utils.item(x)), alignment))
))
print()
# Score only the top hypothesis
if has_target:
if align_dict is not None or args.remove_bpe is not None:
# Convert back to tokens for evaluation with unk replacement and/or without BPE
target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
results.append((target_str, hypo_str))
num_sentences += 1
if has_target:
print('Time = {}'.format(timer.elapsed_time))
ref, out = zip(*results)
print('| Generate {} with beam={}: BLEU4 = {:2.2f}, '.format(args.gen_subset, args.beam, scorer.score(ref, out)))
def dehyphenate(sent):
return re.sub(r'(\S)-(\S)', r'\1 ##AT##-##AT## \2', sent).replace('##AT##', '@')
def generate_batched_itr(data_itr, strategy, models, tgt_dict, length_beam_size=None, use_gold_target_len=False, cuda=True):
"""Iterate over a batched dataset and yield individual translations.
Args:
maxlen_a/b: generate sequences of maximum length ax + b,
where x is the source sentence length.
cuda: use GPU for generation
"""
for sample in data_itr:
s = utils.move_to_cuda(sample) if cuda else sample
if 'net_input' not in s:
continue
input = s['net_input']
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in input.items()
if k != 'prev_output_tokens'
}
with torch.no_grad():
gold_target_len = s['target'].ne(tgt_dict.pad()).sum(-1) if use_gold_target_len else None
hypos = generate(strategy, encoder_input, models, tgt_dict, length_beam_size, gold_target_len)
for batch in range(hypos.size(0)):
src = utils.strip_pad(input['src_tokens'][batch].data, tgt_dict.pad())
ref = utils.strip_pad(s['target'][batch].data, tgt_dict.pad()) if s['target'] is not None else None
hypo = utils.strip_pad(hypos[batch], tgt_dict.pad())
example_id = s['id'][batch].data
yield example_id, src, ref, hypo
def generate(strategy, encoder_input, models, tgt_dict, length_beam_size, gold_target_len):
assert len(models) == 1
model = models[0]
src_tokens = encoder_input['src_tokens']
src_tokens = src_tokens.new(src_tokens.tolist())
bsz = src_tokens.size(0)
encoder_out = model.encoder(**encoder_input)
beam = predict_length_beam(gold_target_len, encoder_out['predicted_lengths'], length_beam_size)
max_len = beam.max().item()
length_mask = torch.triu(src_tokens.new(max_len, max_len).fill_(1).long(), 1)
length_mask = torch.stack([length_mask[beam[batch] - 1] for batch in range(bsz)], dim=0)
tgt_tokens = src_tokens.new(bsz, length_beam_size, max_len).fill_(tgt_dict.mask())
tgt_tokens = (1 - length_mask) * tgt_tokens + length_mask * tgt_dict.pad()
tgt_tokens = tgt_tokens.view(bsz * length_beam_size, max_len)
duplicate_encoder_out(encoder_out, bsz, length_beam_size)
hypotheses, lprobs = strategy.generate(model, encoder_out, tgt_tokens, tgt_dict)
hypotheses = hypotheses.view(bsz, length_beam_size, max_len)
lprobs = lprobs.view(bsz, length_beam_size)
tgt_lengths = (1 - length_mask).sum(-1)
avg_log_prob = lprobs / tgt_lengths.float()
best_lengths = avg_log_prob.max(-1)[1]
hypotheses = torch.stack([hypotheses[b, l, :] for b, l in enumerate(best_lengths)], dim=0)
return hypotheses
def predict_length_beam(gold_target_len, predicted_lengths, length_beam_size):
if gold_target_len is not None:
beam_starts = gold_target_len - (length_beam_size - 1) // 2
beam_ends = gold_target_len + length_beam_size // 2 + 1
beam = torch.stack([torch.arange(beam_starts[batch], beam_ends[batch], device=beam_starts.device) for batch in range(gold_target_len.size(0))], dim=0)
else:
beam = predicted_lengths.topk(length_beam_size, dim=1)[1]
beam[beam < 2] = 2
return beam
if __name__ == '__main__':
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
main(args)