This repository has been archived by the owner on Apr 25, 2024. It is now read-only.
forked from visionml/pytracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
71 lines (53 loc) · 1.54 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class StatValue:
def __init__(self):
self.clear()
def reset(self):
self.val = 0
def clear(self):
self.reset()
self.history = []
def update(self, val):
self.val = val
self.history.append(self.val)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.clear()
self.has_new_data = False
def reset(self):
self.avg = 0
self.val = 0
self.sum = 0
self.count = 0
def clear(self):
self.reset()
self.history = []
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def new_epoch(self):
if self.count > 0:
self.history.append(self.avg)
self.reset()
self.has_new_data = True
else:
self.has_new_data = False
def topk_accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
single_input = not isinstance(topk, (tuple, list))
if single_input:
topk = (topk,)
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)[0]
res.append(correct_k * 100.0 / batch_size)
if single_input:
return res[0]
return res