-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_and_extract_all_TACAS_langs.sh
43 lines (31 loc) · 1.55 KB
/
train_and_extract_all_TACAS_langs.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/bin/bash
BS=500 # batch size
iters_per_lr=3
lrs="(0.004,0.002,0.001,0.0003,0.004,0.001,0.0003)"
input_dim=10
train_set_size=2e4
val_set_size=2e3
val_check_freq=10
extraction_limit=1000 # extraction time limit
subfolder=your_subfolder_here
python3 print_grammars_to_subfolder.py --subfolder=$subfolder # store the grammars as they were when making these RNNs, for easy recall if things shift over time
python3 make_rnns_and_dfas.py --lang=TACAS.all --make-new \
--hidden-dim=100 --num-layers=3 --input-dim=10 --RNNClass=LSTM \
--train-set-size=$train_set_size --validation-set-size=$val_set_size \
--batch-size=$BS --check-validation-improvement-every=$val_check_freq \
--transition-reject-threshold=0.01 --initial-split-depth=10 \
--learning-rates=$lrs --iterations-per-learning-rate=$iters_per_lr \
--token-predictor-samples=100 --token-predictor-cutoff=50 --extraction-time-limit=$extraction_limit \
--subfolder=$subfolder
# template for running only some languages
# for l in LG13 LG14 LG15
# do
# python3 make_rnns_and_dfas.py --lang=TACAS.$l --make-new \
# --hidden-dim=100 --num-layers=3 --input-dim=10 --RNNClass=LSTM \
# --train-set-size=$train_set_size --validation-set-size=$val_set_size \
# --batch-size=$BS --check-validation-improvement-every=$val_check_freq \
# --transition-reject-threshold=0.01 --initial-split-depth=10 \
# --learning-rates=$lrs --iterations-per-learning-rate=$iters_per_lr \
# --token-predictor-samples=100 --token-predictor-cutoff=50 --extraction-time-limit=$extraction_limit \
# --subfolder=$subfolder
# done