forked from mysensors/NodeManager
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NodeManager.cpp
4118 lines (3760 loc) · 118 KB
/
NodeManager.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* NodeManager
*/
#include "NodeManager.h"
/***************************************
PowerManager
*/
// set the vcc and ground pin the sensor is connected to
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
_ground_pin = ground_pin;
_vcc_pin = vcc_pin;
#if DEBUG == 1
Serial.print(F("PWR G="));
Serial.print(_ground_pin);
Serial.print(F(" V="));
Serial.println(_vcc_pin);
#endif
if (_ground_pin > 0) {
// configure the ground pin as output and initialize to low
pinMode(_ground_pin, OUTPUT);
digitalWrite(_ground_pin, LOW);
}
if (_vcc_pin > 0) {
// configure the vcc pin as output and initialize to high (power on)
pinMode(_vcc_pin, OUTPUT);
digitalWrite(_vcc_pin, HIGH);
}
// save wait time
_wait = wait_time;
}
// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
if (_vcc_pin == -1) return;
#if DEBUG == 1
Serial.print(F("ON P="));
Serial.println(_vcc_pin);
#endif
// power on the sensor by turning high the vcc pin
digitalWrite(_vcc_pin, HIGH);
// wait a bit for the device to settle down
if (_wait > 0) wait(_wait);
}
// turn off the sensor
void PowerManager::powerOff() {
if (_vcc_pin == -1) return;
#if DEBUG == 1
Serial.print(F("OFF P="));
Serial.println(_vcc_pin);
#endif
// power off the sensor by turning low the vcc pin
digitalWrite(_vcc_pin, LOW);
}
/******************************************
Timer
*/
Timer::Timer(NodeManager* node_manager) {
_node_manager = node_manager;
}
// start the timer
void Timer::start(int target, int unit) {
set(target,unit);
start();
}
void Timer::start() {
if (_is_configured) _is_running = true;
}
// stop the timer
void Timer::stop() {
_is_running = false;
}
// reset the timer
void Timer::reset() {
// reset the timer
_elapsed = 0;
_last_millis = 0;
}
// restart the timer
void Timer::restart() {
if (! isRunning()) return;
stop();
reset();
// if using millis(), keep track of the current timestamp for calculating the difference
if (! _node_manager->isSleepingNode()) _last_millis = millis();
start();
}
// setup the timer
void Timer::set(int target, int unit) {
reset();
// save the settings
_target = target;
if (unit == MINUTES) _target = _target * 60;
else if (unit == HOURS) _target = _target * 60 *60;
else if (unit == DAYS) _target = _target * 60 * 60 *24;
_is_running = false;
_is_configured = true;
}
// unset the timer
void Timer::unset() {
stop();
_is_configured = true;
}
// update the timer at every cycle
void Timer::update() {
if (! isRunning()) return;
if (_node_manager->isSleepingNode()) {
// millis() is not reliable while sleeping so calculate how long a sleep cycle would last in seconds and update the elapsed time
_elapsed += _node_manager->getSleepSeconds();
} else {
// use millis() to calculate the elapsed time in seconds
_elapsed = (long)((millis() - _last_millis)/1000);
}
_first_run = false;
}
// return true if the time is over
bool Timer::isOver() {
if (! isRunning()) return false;
// time has elapsed
if (_elapsed >= _target) return true;
// millis has started over
if (_elapsed < 0 ) return true;
return false;
}
// return true if the timer is running
bool Timer::isRunning() {
if (! isConfigured()) return false;
return _is_running;
}
// return true if the time is configured
bool Timer::isConfigured() {
return _is_configured;
}
// return true if this is the first time the timer runs
bool Timer::isFirstRun() {
return _first_run;
}
// return elapsed seconds so far
float Timer::getElapsed() {
return _elapsed;
}
/******************************************
Request
*/
Request::Request(const char* string) {
char str[10];
char* ptr;
strcpy(str,string);
// tokenize the string and split function from value
strtok_r(str,",",&ptr);
_function = atoi(str);
strcpy(_value,ptr);
#if DEBUG == 1
Serial.print(F("REQ F="));
Serial.print(getFunction());
Serial.print(F(" I="));
Serial.print(getValueInt());
Serial.print(F(" F="));
Serial.print(getValueFloat());
Serial.print(F(" S="));
Serial.println(getValueString());
#endif
}
// return the parsed function
int Request::getFunction() {
return _function;
}
// return the value as an int
int Request::getValueInt() {
return atoi(_value);
}
// return the value as a float
float Request::getValueFloat() {
return atof(_value);
}
// return the value as a string
char* Request::getValueString() {
return _value;
}
/******************************************
Sensors
*/
/*
Sensor class
*/
// constructor
Sensor::Sensor(NodeManager* node_manager, int child_id, int pin) {
_node_manager = node_manager;
_child_id = child_id;
_pin = pin;
_msg = MyMessage(_child_id, _type);
_msg_service = MyMessage(_child_id, V_CUSTOM);
_report_timer = new Timer(_node_manager);
_force_update_timer = new Timer(_node_manager);
}
// setter/getter
void Sensor::setPin(int value) {
_pin = value;
}
int Sensor::getPin() {
return _pin;
}
void Sensor::setChildId(int value) {
_child_id = value;
}
int Sensor::getChildId() {
return _child_id;
}
void Sensor::setPresentation(int value) {
_presentation = value;
}
int Sensor::getPresentation() {
return _presentation;
}
void Sensor::setType(int value) {
_type = value;
_msg.setType(_type);
}
int Sensor::getType() {
return _type;
}
void Sensor::setDescription(char* value) {
_description = value;
}
void Sensor::setSamples(int value) {
_samples = value;
}
void Sensor::setSamplesInterval(int value) {
_samples_interval = value;
}
void Sensor::setTrackLastValue(bool value) {
_track_last_value = value;
}
void Sensor::setForceUpdateMinutes(int value) {
_force_update_timer->start(value,MINUTES);
}
void Sensor::setForceUpdateHours(int value) {
_force_update_timer->start(value,HOURS);
}
void Sensor::setValueType(int value) {
_value_type = value;
}
int Sensor::getValueType() {
return _value_type;
}
void Sensor::setFloatPrecision(int value) {
_float_precision = value;
}
void Sensor::setDoublePrecision(int value) {
_double_precision = value;
}
#if POWER_MANAGER == 1
void Sensor::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
_powerManager.setPowerPins(ground_pin, vcc_pin, wait_time);
}
void Sensor::setAutoPowerPins(bool value) {
_auto_power_pins = value;
}
void Sensor::powerOn() {
_powerManager.powerOn();
}
void Sensor::powerOff() {
_powerManager.powerOff();
}
#endif
int Sensor::getInterruptPin() {
return _interrupt_pin;
}
int Sensor::getValueInt() {
return _last_value_int;
}
float Sensor::getValueFloat() {
return _last_value_float;
}
char* Sensor::getValueString() {
return _last_value_string;
}
// After how many seconds the sensor will report back its measure
void Sensor::setReportIntervalSeconds(int value) {
_report_timer->start(value,SECONDS);
}
// After how many minutes the sensor will report back its measure
void Sensor::setReportIntervalMinutes(int value) {
_report_timer->start(value,MINUTES);
}
// After how many minutes the sensor will report back its measure
void Sensor::setReportIntervalHours(int value) {
_report_timer->start(value,HOURS);
}
// After how many minutes the sensor will report back its measure
void Sensor::setReportIntervalDays(int value) {
_report_timer->start(value,DAYS);
}
// return true if the report interval has been already configured
bool Sensor::isReportIntervalConfigured() {
return _report_timer->isConfigured();
}
// listen for interrupts on the given pin so interrupt() will be called when occurring
void Sensor::setInterrupt(int pin, int mode, int initial) {
_interrupt_pin = pin;
_node_manager->setInterrupt(pin,mode,initial);
}
// present the sensor to the gateway and controller
void Sensor::presentation() {
#if DEBUG == 1
Serial.print(F("PRES I="));
Serial.print(_child_id);
Serial.print(F(" T="));
Serial.println(_presentation);
#endif
present(_child_id, _presentation,_description,_node_manager->getAck());
}
// call the sensor-specific implementation of before
void Sensor::before() {
if (_pin == -1) return;
onBefore();
}
// call the sensor-specific implementation of setup
void Sensor::setup() {
if (_pin == -1) return;
onSetup();
}
// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
if (_pin == -1) return;
// update the timers if within a loop cycle
if (! _isReceive(message)) {
if (_report_timer->isRunning()) {
// store the elapsed time before updating it
bool first_run = _report_timer->isFirstRun();
// update the timer
_report_timer->update();
// if it is not the time yet to report a new measure, just return (unless the first time)
if (! _report_timer->isOver() && ! first_run) return;
}
if (_force_update_timer->isRunning()) _force_update_timer->update();
}
#if POWER_MANAGER == 1
// turn the sensor on
if (_auto_power_pins) powerOn();
#endif
// for numeric sensor requiring multiple samples, keep track of the total
double total = 0;
// collect multiple samples if needed
for (int i = 0; i < _samples; i++) {
// call the sensor-specific implementation of the main task which will store the result in the _value variable
if (_isReceive(message)) {
// we've been called from receive(), pass the message along
onReceive(message);
}
else {
// we'be been called from loop()
onLoop();
}
// for integers, floats and doubles, keep track of the total
if (_value_type == TYPE_INTEGER) total += (float)_value_int;
else if (_value_type == TYPE_FLOAT) total += _value_float;
else if (_value_type == TYPE_DOUBLE) total += _value_double;
// wait between samples
if (_samples_interval > 0) _node_manager->sleepOrWait(_samples_interval);
}
// process the result and send a response back
if (_value_type == TYPE_INTEGER && total > -1) {
// if the value is an integer, calculate the average value of the samples
int avg = (int) (total / _samples);
// if track last value is disabled or if enabled and the current value is different then the old value, send it back
if (_isReceive(message) || _isWorthSending(avg != _last_value_int)) {
_last_value_int = avg;
_send(_msg.set(avg));
_value_int = -1;
}
}
// process a float value
else if (_value_type == TYPE_FLOAT && total > -1) {
// calculate the average value of the samples
float avg = total / _samples;
// report the value back
if (_isReceive(message) || _isWorthSending(avg != _last_value_float)) {
_last_value_float = avg;
_send(_msg.set(avg, _float_precision));
_value_float = -1;
}
}
// process a double value
else if (_value_type == TYPE_DOUBLE && total > -1) {
// calculate the average value of the samples
double avg = total / _samples;
// report the value back
if (_isReceive(message) || _isWorthSending(avg != _last_value_double)) {
_last_value_double = avg;
_send(_msg.set(avg, _double_precision));
_value_double = -1;
}
}
// process a string value
else if (_value_type == TYPE_STRING) {
// if track last value is disabled or if enabled and the current value is different then the old value, send it back
if (_isReceive(message) || _isWorthSending(strcmp(_value_string, _last_value_string) != 0)) {
_last_value_string = _value_string;
_send(_msg.set(_value_string));
_value_string = "";
}
}
// turn the sensor off
#if POWER_MANAGER == 1
if (_auto_power_pins) powerOff();
#endif
// restart the report timer if over
if (! _isReceive(message) && _report_timer->isRunning() && _report_timer->isOver()) _report_timer->restart();
}
// receive and handle an interrupt
void Sensor::interrupt() {
// call the implementation of onInterrupt()
onInterrupt();
}
// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
// return if not for this sensor
if (message.sensor != _child_id) return;
// check if it is a request for the API
if (message.getCommand() == C_REQ && message.type == V_CUSTOM) {
#if REMOTE_CONFIGURATION == 1
// parse the request
Request request = Request(message.getString());
// if it is for a sensor-generic function, call process(), otherwise the sensor-specific onProcess();
if (request.getFunction() < 100) process(request);
else onProcess(request);
#endif
}
// return if the type is not correct
if (message.type != _type) return;
// a request would make the sensor executing its main task passing along the message
loop(message);
}
// process a remote configuration request message
void Sensor::process(Request & request) {
int function = request.getFunction();
switch(function) {
case 1: setPin(request.getValueInt()); break;
case 2: setChildId(request.getValueInt()); break;
case 3: setType(request.getValueInt()); break;
case 4: setDescription(request.getValueString()); break;
case 5: setSamples(request.getValueInt()); break;
case 6: setSamplesInterval(request.getValueInt()); break;
case 7: setTrackLastValue(request.getValueInt()); break;
case 9: setForceUpdateMinutes(request.getValueInt()); break;
case 10: setValueType(request.getValueInt()); break;
case 11: setFloatPrecision(request.getValueInt()); break;
#if POWER_MANAGER == 1
case 12: setAutoPowerPins(request.getValueInt()); break;
case 13: powerOn(); break;
case 14: powerOff(); break;
#endif
case 16: setReportIntervalMinutes(request.getValueInt()); break;
case 17: setReportIntervalSeconds(request.getValueInt()); break;
case 19: setReportIntervalHours(request.getValueInt()); break;
case 20: setReportIntervalDays(request.getValueInt()); break;
case 18: setForceUpdateHours(request.getValueInt()); break;
case 21: setDoublePrecision(request.getValueInt()); break;
default: return;
}
_send(_msg_service.set(function));
}
// send a message to the network
void Sensor::_send(MyMessage & message) {
// send the message, multiple times if requested
for (int i = 0; i < _node_manager->getRetries(); i++) {
// if configured, sleep beetween each send
if (_node_manager->getSleepBetweenSend() > 0) sleep(_node_manager->getSleepBetweenSend());
#if DEBUG == 1
Serial.print(F("SEND D="));
Serial.print(message.destination);
Serial.print(F(" I="));
Serial.print(message.sensor);
Serial.print(F(" C="));
Serial.print(message.getCommand());
Serial.print(F(" T="));
Serial.print(message.type);
Serial.print(F(" S="));
Serial.print(message.getString());
Serial.print(F(" I="));
Serial.print(message.getInt());
Serial.print(F(" F="));
Serial.println(message.getFloat());
#endif
send(message,_node_manager->getAck());
}
}
// return true if the message is coming from the radio network
bool Sensor::_isReceive(const MyMessage & message) {
if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) return false;
return true;
}
// determine if a value is worth sending back to the controller
bool Sensor::_isWorthSending(bool comparison) {
// track last value is disabled
if (! _track_last_value) return true;
// track value is enabled and the current value is different then the old value
if (_track_last_value && comparison) return true;
// track value is enabled and the timer is over
if (_track_last_value && _force_update_timer->isRunning() && _force_update_timer->isOver()) {
// restart the timer
_force_update_timer->restart();
return true;
}
return false;
}
#if MODULE_ANALOG_INPUT == 1
/*
SensorAnalogInput
*/
// contructor
SensorAnalogInput::SensorAnalogInput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
}
// setter/getter
void SensorAnalogInput::setReference(int value) {
_reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
_reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
_output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
_range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
_range_max = value;
}
// what to do during before
void SensorAnalogInput::onBefore() {
// prepare the pin for input
pinMode(_pin, INPUT);
}
// what to do during setup
void SensorAnalogInput::onSetup() {
}
// what to do during loop
void SensorAnalogInput::onLoop() {
// read the input
int adc = _getAnalogRead();
// calculate the percentage
int percentage = 0;
if (_output_percentage) percentage = _getPercentage(adc);
#if DEBUG == 1
Serial.print(F("A-IN I="));
Serial.print(_child_id);
Serial.print(F(" V="));
Serial.print(adc);
Serial.print(F(" %="));
Serial.println(percentage);
#endif
// store the result
_value_int = _output_percentage ? percentage : adc;
}
// what to do during loop
void SensorAnalogInput::onReceive(const MyMessage & message) {
if (message.getCommand() == C_REQ) onLoop();
}
// what to do when receiving a remote message
void SensorAnalogInput::onProcess(Request & request) {
int function = request.getFunction();
switch(function) {
case 101: setReference(request.getValueInt()); break;
case 102: setReverse(request.getValueInt()); break;
case 103: setOutputPercentage(request.getValueInt()); break;
case 104: setRangeMin(request.getValueInt()); break;
case 105: setRangeMax(request.getValueInt()); break;
default: return;
}
_send(_msg_service.set(function));
}
// what to do when receiving an interrupt
void SensorAnalogInput::onInterrupt() {
}
// read the analog input
int SensorAnalogInput::_getAnalogRead() {
#ifndef MY_GATEWAY_ESP8266
// set the reference
if (_reference != -1) {
analogReference(_reference);
wait(100);
}
#endif
// read and return the value
int value = analogRead(_pin);
if (_reverse) value = _range_max - value;
return value;
}
// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
float value = (float)adc;
// restore the original value
if (_reverse) value = 1024 - value;
// scale the percentage based on the range provided
float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
if (_reverse) percentage = 100 - percentage;
if (percentage > 100) percentage = 100;
if (percentage < 0) percentage = 0;
return (int)percentage;
}
/*
SensorLDR
*/
// contructor
SensorLDR::SensorLDR(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager, child_id, pin) {
// set presentation and type and reverse (0: no light, 100: max light)
setPresentation(S_LIGHT_LEVEL);
setType(V_LIGHT_LEVEL);
setReverse(true);
}
/*
SensorThermistor
*/
// contructor
SensorThermistor::SensorThermistor(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
// set presentation, type and value type
setPresentation(S_TEMP);
setType(V_TEMP);
setValueType(TYPE_FLOAT);
}
// setter/getter
void SensorThermistor::setNominalResistor(long value) {
_nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
_nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
_b_coefficient = value;
}
void SensorThermistor::setSeriesResistor(long value) {
_series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
_offset = value;
}
// what to do during before
void SensorThermistor::onBefore() {
// set the pin as input
pinMode(_pin, INPUT);
}
// what to do during setup
void SensorThermistor::onSetup() {
}
// what to do during loop
void SensorThermistor::onLoop() {
// read the voltage across the thermistor
float adc = analogRead(_pin);
// calculate the temperature
float reading = (1023 / adc) - 1;
reading = _series_resistor / reading;
float temperature;
temperature = reading / _nominal_resistor; // (R/Ro)
temperature = log(temperature); // ln(R/Ro)
temperature /= _b_coefficient; // 1/B * ln(R/Ro)
temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
temperature = 1.0 / temperature; // Invert
temperature -= 273.15; // convert to C
temperature = _node_manager->celsiusToFahrenheit(temperature);
#if DEBUG == 1
Serial.print(F("THER I="));
Serial.print(_child_id);
Serial.print(F(" V="));
Serial.print(adc);
Serial.print(F(" T="));
Serial.println(temperature);
#endif
// store the value
_value_float = temperature;
}
// what to do as the main task when receiving a message
void SensorThermistor::onReceive(const MyMessage & message) {
if (message.getCommand() == C_REQ) onLoop();
}
// what to do when receiving a remote message
void SensorThermistor::onProcess(Request & request) {
int function = request.getFunction();
switch(function) {
case 101: setNominalResistor((long)request.getValueInt()); break;
case 102: setNominalTemperature(request.getValueInt()); break;
case 103: setBCoefficient(request.getValueInt()); break;
case 104: setSeriesResistor((long)request.getValueString()); break;
case 105: setOffset(request.getValueFloat()); break;
default: return;
}
_send(_msg_service.set(function));
}
// what to do when receiving an interrupt
void SensorThermistor::onInterrupt() {
}
/*
SensorML8511
*/
// contructor
SensorML8511::SensorML8511(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
// set presentation, type and value type
setPresentation(S_UV);
setType(V_UV);
setValueType(TYPE_FLOAT);
}
// what to do during before
void SensorML8511::onBefore() {
// set the pin as input
pinMode(_pin, INPUT);
}
// what to do during setup
void SensorML8511::onSetup() {
}
// what to do during loop
void SensorML8511::onLoop() {
// read the voltage
int uvLevel = analogRead(_pin);
int refLevel = _node_manager->getVcc()*1024/3.3;
//Use the 3.3V power pin as a reference to get a very accurate output value from sensor
float outputVoltage = 3.3 / refLevel * uvLevel;
//Convert the voltage to a UV intensity level
float uvIntensity = _mapfloat(outputVoltage, 0.99, 2.8, 0.0, 15.0);
#if DEBUG == 1
Serial.print(F("UV I="));
Serial.print(_child_id);
Serial.print(F(" V="));
Serial.print(outputVoltage);
Serial.print(F(" I="));
Serial.println(uvIntensity);
#endif
// store the value
_value_float = uvIntensity;
}
// what to do as the main task when receiving a message
void SensorML8511::onReceive(const MyMessage & message) {
if (message.getCommand() == C_REQ) onLoop();
}
// what to do when receiving a remote message
void SensorML8511::onProcess(Request & request) {
}
// what to do when receiving an interrupt
void SensorML8511::onInterrupt() {
}
// The Arduino Map function but for floats
float SensorML8511::_mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
/*
SensorACS712
*/
// contructor
SensorACS712::SensorACS712(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
// set presentation, type and value type
setPresentation(S_MULTIMETER);
setType(V_CURRENT);
setValueType(TYPE_FLOAT);
}
// setter/getter
void SensorACS712::setmVPerAmp(int value) {
_mv_per_amp = value;
}
void SensorACS712::setOffset(int value) {
_ACS_offset = value;
}
// what to do during before
void SensorACS712::onBefore() {
// set the pin as input
pinMode(_pin, INPUT);
}
// what to do during setup
void SensorACS712::onSetup() {
}
// what to do during loop
void SensorACS712::onLoop() {
int value = analogRead(_pin);
// convert the analog read in mV
double voltage = (value / 1024.0) * 5000;
// convert voltage in amps
_value_float = ((voltage - _ACS_offset) / _mv_per_amp);
#if DEBUG == 1
Serial.print(F("ACS I="));
Serial.print(_child_id);
Serial.print(F(" A="));
Serial.println(_value_float);
#endif
}
// what to do as the main task when receiving a message
void SensorACS712::onReceive(const MyMessage & message) {
if (message.getCommand() == C_REQ) onLoop();
}
// what to do when receiving a remote message
void SensorACS712::onProcess(Request & request) {
int function = request.getFunction();
switch(function) {
case 100: setmVPerAmp(request.getValueInt()); break;
case 102: setOffset(request.getValueInt()); break;
default: return;
}
_send(_msg_service.set(function));
}
// what to do when receiving an interrupt
void SensorACS712::onInterrupt() {
}
/*
SensorRain
*/
// contructor
SensorRain::SensorRain(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager,child_id, pin) {
// set presentation and type and reverse
setPresentation(S_RAIN);
setType(V_RAINRATE);
setReference(DEFAULT);
setOutputPercentage(true);
setReverse(true);
setRangeMin(100);
}
/*
SensorSoilMoisture
*/
// contructor
SensorSoilMoisture::SensorSoilMoisture(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager, child_id, pin) {
// set presentation and type and reverse
setPresentation(S_MOISTURE);
setType(V_LEVEL);
setReference(DEFAULT);
setOutputPercentage(true);
setReverse(true);
setRangeMin(100);
}
#endif
#if MODULE_DIGITAL_INPUT == 1
/*
SensorDigitalInput
*/
// contructor
SensorDigitalInput::SensorDigitalInput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
}
// what to do during before
void SensorDigitalInput::onBefore() {
// set the pin for input
pinMode(_pin, INPUT);
}
// what to do during setup
void SensorDigitalInput::onSetup() {
}
// what to do during loop
void SensorDigitalInput::onLoop() {
// read the value
int value = digitalRead(_pin);
#if DEBUG == 1
Serial.print(F("D-IN I="));
Serial.print(_child_id);
Serial.print(F(" P="));
Serial.print(_pin);
Serial.print(F(" V="));
Serial.println(value);
#endif
// store the value
_value_int = value;
}
// what to do as the main task when receiving a message
void SensorDigitalInput::onReceive(const MyMessage & message) {
if (message.getCommand() == C_REQ) onLoop();
}
// what to do when receiving a remote message
void SensorDigitalInput::onProcess(Request & request) {
}
// what to do when receiving an interrupt
void SensorDigitalInput::onInterrupt() {
}
#endif
#if MODULE_DIGITAL_OUTPUT == 1
/*
SensorDigitalOutput
*/
SensorDigitalOutput::SensorDigitalOutput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
_safeguard_timer = new Timer(node_manager);
}
// what to do during before
void SensorDigitalOutput::onBefore() {
_setupPin(_pin);
}
// what to do during setup
void SensorDigitalOutput::onSetup() {
}
// setter/getter
void SensorDigitalOutput::setOnValue(int value) {
_on_value = value;
}
void SensorDigitalOutput::setLegacyMode(bool value) {
_legacy_mode = value;
}
void SensorDigitalOutput::setSafeguard(int value) {
_safeguard_timer->set(value,MINUTES);
}
int SensorDigitalOutput::getStatus() {