-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtransfer_learning.py
executable file
·227 lines (199 loc) · 8.99 KB
/
transfer_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) [2012]-[2021] Shanghai Yitu Technology Co., Ltd.
#
# This source code is licensed under the Clear BSD License
# LICENSE file in the root directory of this file
# All rights reserved.
"""
Tranfer pretrained ASF-former to downstream dataset: CIFAR10/CIFAR100.
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from timm.models import *
from utils import progress_bar
from timm.models import create_model
from utils import load_for_transfer_learning
parser = argparse.ArgumentParser(description='PyTorch CIFAR10/CIFAR100 Training')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--wd', default=5e-4, type=float, help='weight decay')
parser.add_argument('--min-lr', default=2e-4, type=float, help='minimal learning rate')
parser.add_argument('--dataset', type=str, default='cifar10',
help='cifar10 or cifar100')
parser.add_argument('--b', type=int, default=128,
help='batch size')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('--num-classes', type=int, default=10, metavar='N',
help='number of label classes (default: 1000)')
parser.add_argument('--model', default='ASF_former_S', type=str, metavar='MODEL',
help='Name of model to train (default: "countception"')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.0)')
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--img-size', type=int, default=224, metavar='N',
help='Image patch size (default: None => model default)')
parser.add_argument('--bn-tf', action='store_true', default=False,
help='Use Tensorflow BatchNorm defaults for models that support it (default: False)')
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None,
help='BatchNorm epsilon override (if not None)')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
# Transfer learning
parser.add_argument('--transfer-learning', default=False,
help='Enable transfer learning')
parser.add_argument('--transfer-model', type=str, default=None,
help='Path to pretrained model for transfer learning')
parser.add_argument('--transfer-ratio', type=float, default=0.01,
help='lr ratio between classifier and backbone in transfer learning')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.Resize(args.img_size),
transforms.RandomCrop(args.img_size, padding=(args.img_size//8)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.Resize(args.img_size),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.dataset=='cifar10':
args.num_classes = 10
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=False, transform=transform_train)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=False, transform=transform_test)
elif args.dataset=='cifar100':
args.num_classes = 100
trainset = torchvision.datasets.CIFAR100(
root='./data', train=True, download=False, transform=transform_train)
testset = torchvision.datasets.CIFAR100(
root='./data', train=False, download=False, transform=transform_test)
else:
print('Please use cifar10 or cifar100 dataset.')
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.b, shuffle=True, num_workers=8)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=8)
print(f'learning rate:{args.lr}, weight decay: {args.wd}')
# create T2T-ViT Model
print('==> Building model..')
net = create_model(
args.model,
pretrained=args.pretrained,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_connect_rate=args.drop_connect,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
global_pool=args.gp,
bn_tf=args.bn_tf,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps,
checkpoint_path=args.initial_checkpoint,
img_size=args.img_size)
if args.transfer_learning:
print('transfer learning, load t2t-vit pretrained model')
load_for_transfer_learning(net, args.transfer_model, use_ema=True, strict=False, num_classes=args.num_classes)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint_{}_{}'.format(args.dataset,args.model)), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint_{}_{}/ckpt.pth'.format(args.dataset,args.model))
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
# set optimizer
if args.transfer_learning:
print('set different lr for the t2t module, backbone and classifier(head) of T2T-ViT')
parameters = [{'params': net.module.tokens_to_token.parameters(), 'lr': args.transfer_ratio * args.lr},
{'params': net.module.blocks.parameters(), 'lr': args.transfer_ratio * args.lr},
{'params': net.module.head.parameters()}]
else:
parameters = net.parameters()
optimizer = optim.SGD(parameters, lr=args.lr,
momentum=0.9, weight_decay=args.wd)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, eta_min=args.min_lr, T_max=60)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir(f'checkpoint_{args.dataset}_{args.model}'):
os.mkdir(f'checkpoint_{args.dataset}_{args.model}')
torch.save(state, f'./checkpoint_{args.dataset}_{args.model}/ckpt_{args.lr}_{args.wd}_{acc}.pth')
best_acc = acc
for epoch in range(start_epoch, start_epoch+100):
train(epoch)
test(epoch)
scheduler.step()