forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
atari_agent.py
executable file
·161 lines (135 loc) · 6.07 KB
/
atari_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.fluid as fluid
import parl
from parl import layers
from parl.utils import machine_info
from parl.utils.scheduler import PiecewiseScheduler, LinearDecayScheduler
class AtariAgent(parl.Agent):
def __init__(self, algorithm, config):
"""
Args:
algorithm (`parl.Algorithm`): algorithm to be used in this agent.
config (dict): config file describing the training hyper-parameters(see a2c_config.py)
"""
self.obs_shape = config['obs_shape']
super(AtariAgent, self).__init__(algorithm)
self.lr_scheduler = LinearDecayScheduler(config['start_lr'],
config['max_sample_steps'])
self.entropy_coeff_scheduler = PiecewiseScheduler(
config['entropy_coeff_scheduler'])
def build_program(self):
self.sample_program = fluid.Program()
self.predict_program = fluid.Program()
self.value_program = fluid.Program()
self.learn_program = fluid.Program()
with fluid.program_guard(self.sample_program):
obs = layers.data(
name='obs', shape=self.obs_shape, dtype='float32')
sample_actions, values = self.alg.sample(obs)
self.sample_outputs = [sample_actions, values]
with fluid.program_guard(self.predict_program):
obs = layers.data(
name='obs', shape=self.obs_shape, dtype='float32')
self.predict_actions = self.alg.predict(obs)
with fluid.program_guard(self.value_program):
obs = layers.data(
name='obs', shape=self.obs_shape, dtype='float32')
self.values = self.alg.value(obs)
with fluid.program_guard(self.learn_program):
obs = layers.data(
name='obs', shape=self.obs_shape, dtype='float32')
actions = layers.data(name='actions', shape=[], dtype='int64')
advantages = layers.data(
name='advantages', shape=[], dtype='float32')
target_values = layers.data(
name='target_values', shape=[], dtype='float32')
lr = layers.data(
name='lr', shape=[1], dtype='float32', append_batch_size=False)
entropy_coeff = layers.data(
name='entropy_coeff', shape=[], dtype='float32')
total_loss, pi_loss, vf_loss, entropy = self.alg.learn(
obs, actions, advantages, target_values, lr, entropy_coeff)
self.learn_outputs = [total_loss, pi_loss, vf_loss, entropy]
self.learn_program = parl.compile(self.learn_program, total_loss)
def sample(self, obs_np):
"""
Args:
obs_np: a numpy float32 array of shape ([B] + observation_space).
Format of image input should be NCHW format.
Returns:
sample_ids: a numpy int64 array of shape [B]
values: a numpy float32 array of shape [B]
"""
obs_np = obs_np.astype('float32')
sample_actions, values = self.fluid_executor.run(
self.sample_program,
feed={'obs': obs_np},
fetch_list=self.sample_outputs)
return sample_actions, values
def predict(self, obs_np):
"""
Args:
obs_np: a numpy float32 array of shape ([B] + observation_space).
Format of image input should be NCHW format.
Returns:
sample_ids: a numpy int64 array of shape [B]
"""
obs_np = obs_np.astype('float32')
predict_actions = self.fluid_executor.run(
self.predict_program,
feed={'obs': obs_np},
fetch_list=[self.predict_actions])[0]
return predict_actions
def value(self, obs_np):
"""
Args:
obs_np: a numpy float32 array of shape ([B] + observation_space).
Format of image input should be NCHW format.
Returns:
values: a numpy float32 array of shape [B]
"""
obs_np = obs_np.astype('float32')
values = self.fluid_executor.run(
self.value_program, feed={'obs': obs_np},
fetch_list=[self.values])[0]
return values
def learn(self, obs_np, actions_np, advantages_np, target_values_np):
"""
Args:
obs_np: a numpy float32 array of shape ([B] + observation_space).
Format of image input should be NCHW format.
actions_np: a numpy int64 array of shape [B]
advantages_np: a numpy float32 array of shape [B]
target_values_np: a numpy float32 array of shape [B]
"""
obs_np = obs_np.astype('float32')
actions_np = actions_np.astype('int64')
advantages_np = advantages_np.astype('float32')
target_values_np = target_values_np.astype('float32')
lr = self.lr_scheduler.step(step_num=obs_np.shape[0])
entropy_coeff = self.entropy_coeff_scheduler.step()
total_loss, pi_loss, vf_loss, entropy = self.fluid_executor.run(
self.learn_program,
feed={
'obs': obs_np,
'actions': actions_np,
'advantages': advantages_np,
'target_values': target_values_np,
'lr': np.array([lr], dtype='float32'),
'entropy_coeff': np.array([entropy_coeff], dtype='float32')
},
fetch_list=self.learn_outputs)
return total_loss, pi_loss, vf_loss, entropy, lr, entropy_coeff