forked from IndEcol/RECC-ODYM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathODYM_RECC_Evaluate_Scenarios.py
1017 lines (911 loc) · 72.4 KB
/
ODYM_RECC_Evaluate_Scenarios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 14 05:18:48 2019
@author: spauliuk
"""
"""
File ODYM_RECC_ScenarioEvaluate_V2_4.py
Script that runs the sensitivity and scnenario comparison scripts for different settings.
Section 1: single sector cascade
Section 2: multi-sector cascade
Section 3: Sensitivity plots
Section 4: Bar plot sufficiency
"""
# Import required libraries:
import os
import openpyxl
import numpy as np
import matplotlib.pyplot as plt
import pylab
import pandas as pd
import uuid
import shutil
import RECC_Paths # Import path file
# Create UUID of script run
Current_UUID = str(uuid.uuid4())
RECC_Paths.results_path_save = os.path.join(RECC_Paths.results_path_eval,'RECC_Results_' + Current_UUID)
if not os.path.exists(RECC_Paths.results_path_save): # Create scrip run results directory.
os.makedirs(RECC_Paths.results_path_save)
shutil.copy(os.path.join(RECC_Paths.data_path,'RECC_ModelConfig_List.xlsx'), os.path.join(RECC_Paths.results_path_save,'RECC_ModelConfig_List.xlsx'))
shutil.copy(os.path.join(RECC_Paths.recc_path,'ODYM_RECC_Evaluate_Scenarios.py'), os.path.join(RECC_Paths.results_path_save,'ODYM_RECC_Evaluate_Scenarios.py'))
# The following SINGLE REGION scripts are called whenever there is a single cascade (for reb, pav, ...) or sensitivity analysis for a given region.
import ODYM_RECC_Evaluate_Cascade
import ODYM_RECC_Evaluate_BarPlot_ME_Industry_Demand
import ODYM_RECC_Evaluate_Sensitivity
import ODYM_RECC_Evaluate_Table_Extract
import ODYM_RECC_Evaluate_GHG_Overview
# The following ALL REGION scripts are called when ALL 20 world regions are present in the result folder list.
# Define list of 20 regions, to be arranged 5 x 5, and corresponding data containers
Pav_axis_5x5 = [5000,5000,2500,2500,2500,800,800,800,50,50,420,420,420,420,420,200,200,200,200,200,100,100,100,100,100]
Pav_RegionList20 = ['Global','Global_North','Global_South','G7','R32USA', \
'EU28','R32CHN','R5.2SSA_Other','Oth_R32EU12-H','R32EU12-M',\
'R32IND','R5.2OECD_Other','R5.2ASIA_Other','R5.2REF_Other','R5.2MNF_Other',\
'R32CAN','R32JPN','R5.2LAM_Other','Oth_R32EU15','Germany',\
'France','Italy','Poland','Spain','UK']
Pav_RegionList20Plot = ['Global','Glob_North','Glob_South','G7','USA', \
'EU28','China','SSA_Other','Oth_EU12-H','EU12-M',\
'India','OECD_Other','ASIA_Other','REF_Other','MNF_Other',\
'Canada','Japan','LAM_Other','Oth_EU15','Germany',\
'France','Italy','Poland','Spain','UK']
Reb_axis_5x5 = [12000,9000,4500,4500,4500,1500,1500,1500,1500,1500,1200,600,600,300,300,200,200,200,200,200,120,120,120,120,120]
Reb_RegionList20 = ['Global','Global_North','Global_South','R32CHN','G7', \
'EU28','R32USA','R5.2ASIA_Other','R5.2REF_Other','R5.2MNF_Other',\
'R32IND','R5.2SSA_Other','R5.2OECD_Other','Germany','R5.2LAM_Other',\
'R32CAN','UK','France','Oth_R32EU15','R32JPN',\
'Italy','Poland','Spain','Oth_R32EU12-H','R32EU12-M']
Reb_RegionList20Plot = ['Global','Glob_North','Glob_South','China','G7', \
'EU28','USA','ASIA_Other','REF_Other','MNF_Other',\
'India','SSA_Other','OECD_Other','Germany','LAM_Other',\
'Canada','UK','France','Oth_EU15','Japan',\
'Italy','Poland','Spain','Oth_EU12-H','EU12-M']
Pav_axis_7x2 = [5000,3500,3500,2000,1000,500,500]
Reb_axis_7x2 = [8000,8000,3000,3000,3000,800,800]
All_RegionList7 = ['Global','Global_North','Global_South','G7','R32CHN','R32IND','R5.2SSA_Other']
All_RegionList7Plot = ['Global','Global North','Global South','G7','China','India','Sub-Saharan Africa']
PlotOrder_pav = [] # Will contain positions of countries/regions in 5x5 plot
PlotOrder_reb = [] # Will contain positions of countries/regions in 5x5 plot
PlotOrder_7_pav = [] # Will contain positions of countries/regions in 7x2 plot
PlotOrder_7_reb = [] # Will contain positions of countries/regions in 7x2 plot
Population_All = np.zeros((45,25,3)) # Nt x Nr x NS x NR / time x regions x SSP, time starts in 2016 with index 0.
TimeSeries_All = np.zeros((30,45,25,2,3,2)) # NX x Nt x Nr x NV x NS x NR / indicators x time x regions x sectors x SSP x RCP, time starts in 2016 with index 0.
# 0: system-wide GHG, no RES 1: system-wide GHG, all RES
# 2: material-related GHG, no RES, 3: material-related GHG, all RES,
PlotExpResolution = 300 # dpi 100 for overview or 500 for paper
# Color definition
#MyColorCycle = pylab.cm.Set1(np.arange(0,1,0.1)) # select 12 colors from the 'Paired' color map.
BaseBrown = np.array([0.749,0.506,0.176,1]) # Base for GHG before ME reduction
BaseBlue = np.array([0.208,0.592,0.561,1]) # Base for GHG after full ME reduction
# Number of scenarios:
NS = 3 # SSP
NR = 2 # RCP
###ScenarioSetting, sheet name of RECC_ModelConfig_List.xlsx to be selected:
ScenarioSetting = 'Evaluate_pav_reb_Cascade' # run eval and plot scripts for selected regions and sectors only
#ScenarioSetting = 'Evaluate_pav_reb_Cascade_all' # run eval and plot scripts for all regions and sectors
#ScenarioSetting = 'Germany_detail_evaluate' # run eval and plot scripts for Germany case study only
#ScenarioSetting = 'Evaluate_TestRun' # Test run evaluate
# open scenario sheet
ModelConfigListFile = openpyxl.load_workbook(os.path.join(RECC_Paths.data_path,'RECC_ModelConfig_List.xlsx'))
ModelEvalListSheet = ModelConfigListFile[ScenarioSetting]
# open result summary file
mywb = openpyxl.load_workbook(os.path.join(RECC_Paths.results_path,'RECC_Global_Results_Template_CascSens.xlsx')) # for total emissions
mywb4 = openpyxl.load_workbook(os.path.join(RECC_Paths.results_path,'RECC_Global_Results_Template_Overview.xlsx')) # for emissions to be reported in Tables.
#Read control lines and execute main model script
Row = 1
Table_Annual = np.zeros((3,8,NS,NR)) # 2050 annual system emissions, cascade steps x SSP scenarios x RCP scenarios.
Table_CumEms = np.zeros((3,8,NS,NR)) # 2016-2050 (!) cumulative system emissions, cascade steps x SSP scenarios x RCP scenarios.
MatStocksTab1 = np.zeros((9,6)) # Material stocks for table, LED.
MatStocksTab2 = np.zeros((9,6)) # Material stocks for table, SSP1.
MatStocksTab3 = np.zeros((9,6)) # Material stocks for table, SSP2.
MatStocks_all = np.zeros((45,7,6,3,2,8)) # Nt x Nr(7) x Nm(6) x NS x NR x NRES, time starts in 2016 with index 0. For all sectors only!
CascadeFlag1 = False
CascadeFlag2 = False
SensitiFlag1 = False
SingleSectList = [] # For model runs not part of sensitivity or cascade, used for efficiency-sufficiency bar plot
SingleSectRegionList = [] # For regions for eff-suff plot
# search for script config list entry
while ModelEvalListSheet.cell(Row+1, 2).value != 'ENDOFLIST':
if ModelEvalListSheet.cell(Row+1, 2).value != '':
FolderList = []
MultiSectorList = []
RegionalScope = ModelEvalListSheet.cell(Row+1, 2).value
Setting = ModelEvalListSheet.cell(Row+1, 3).value # cascade or sensitivity
print(RegionalScope)
if Setting == 'Cascade_pav':
CascadeFlag1 = True
SectorString = 'pav'
Vsheet = mywb[RegionalScope + '_Vehicles']
NE = 7 # 7 for vehs. and 6 for buildings
LWE_Labels = ['Higher yields', 'Re-use/longer use','Material subst.','Down-sizing','Car-sharing','Ride-sharing','Residual emissions']
if Setting == 'Cascade_reb':
CascadeFlag1 = True
SectorString = 'reb'
Vsheet = mywb[RegionalScope + '_ResBuildings']
NE = 6 # 7 for vehs. and 6 for buildings
LWE_Labels = ['Higher yields', 'Re-use/longer use','Material subst.','Light-weighting','More intense bld. use','Residual emissions']
if Setting == 'Cascade_nrb':
CascadeFlag1 = True
SectorString = 'nrb'
Vsheet = mywb[RegionalScope + '_NonResBuildings']
NE = 6 # 7 for vehs. and 6 for buildings
LWE_Labels = ['Higher yields', 'Re-use/longer use','Material subst.','Light-weighting','More intense bld. use','Residual emissions']
if Setting == 'Cascade_pav_reb':
CascadeFlag2 = True
SectorString = 'pav_reb'
NE = 8 # 8 for vehs, res and nonres buildings
LWE_Labels = ['Higher yields', 'Re-use/longer use','Material subst.','Down-sizing','Car-sharing','Ride-sharing','More intense bld. use','Residual emissions']
if Setting == 'Cascade_pav_reb_nrb':
CascadeFlag2 = True
SectorString = 'pav_reb_nrb'
NE = 8 # 8 for vehs, res and nonres buildings
LWE_Labels = ['Higher yields', 'Re-use/longer use','Material subst.','Down-sizing','Car-sharing','Ride-sharing','More intense bld. use','Residual emissions']
CascCols = [5,13] # Col indices to extract results from.
if CascadeFlag1 is True: # Single sector: pav, reb, or nrb. Extract results for this cascade and store
CascadeFlag1 = False
Descr = 'Cascade_' + RegionalScope + '_' + SectorString
print(Descr)
for m in range(0,NE):
FolderList.append(ModelEvalListSheet.cell(Row +m+1, 4).value)
# run the cascade plot function
ASummary, AvgDecadalEms, MatSummary, AvgDecadalMatEms, RecCredit, UsePhaseSummary, ManSummary, ForSummary, AvgDecadalUseEms, AvgDecadalManEms, AvgDecadalForEms, AvgDecadalRecEms, CumEms2050, CumEms2060, AnnEms2050, MatStocks, TimeSeries_R, MatEms, Population = ODYM_RECC_Evaluate_Cascade.main(RegionalScope,FolderList,SectorString,Current_UUID)
# Export cascade results via pandas:
ColIndex = [str(mmx) for mmx in range(2016,2061)]
MatEma_R_Data = np.einsum('tSRE->ESRt',MatEms).reshape(NE*NS*NR,45)
if SectorString == 'pav':
RES_List = ['None','EoL + FSD + FYI','EoL + FSD + FYI + ReU +LTE','EoL + FSD + FYI + ReU +LTE + MSu','EoL + FSD + FYI + ReU +LTE + MSu + LWE','EoL + FSD + FYI + ReU +LTE + MSu + LWE + CaS','EoL + FSD + FYI + ReU +LTE + MSu + LWE + CaS + RiS = ALL']
else: # for reb and nrb
RES_List = ['None','EoL + FSD + FYI','EoL + FSD + FYI + ReU +LTE','EoL + FSD + FYI + ReU +LTE + MSu','EoL + FSD + FYI + ReU +LTE + MSu + LWE','EoL + FSD + FYI + ReU +LTE + MSu + LWE + MIU = ALL']
RowIndex = pd.MultiIndex.from_product([RES_List,['LED','SSP1','SSP2'],['NoNewClimPol','RCP2.6']], names=('res. eff.','SSP','RCP'))
MatEma_R = pd.DataFrame(MatEma_R_Data, index=RowIndex, columns=ColIndex)
MatEma_R.to_excel(os.path.join(RECC_Paths.results_path_save,Descr + '_Mat_GHG_MtCO2.xls'), merge_cells=False)
# Export material production via pandas, sum over all materials
# PP_R_Data = np.einsum('EtSR->ESRt',TimeSeries_R[2,:,:,:,:]).reshape(NE*NS*NR,45)
# PP_R = pd.DataFrame(PP_R_Data, index=RowIndex, columns=ColIndex)
# PP_R.to_excel(os.path.join(RECC_Paths.results_path_save,Descr + '_Mat_PrimProd_Mt.xls'), merge_cells=False)
# SP_R_Data = np.einsum('EtSR->ESRt',TimeSeries_R[3,:,:,:,:]).reshape(NE*NS*NR,45)
# SP_R = pd.DataFrame(SP_R_Data, index=RowIndex, columns=ColIndex)
# SP_R.to_excel(os.path.join(RECC_Paths.results_path_save,Descr + '_Mat_SecProd_Mt.xls'), merge_cells=False)
# Create GHG overview plot
ODYM_RECC_Evaluate_GHG_Overview.main(RegionalScope,SectorString,CumEms2050,CumEms2060,TimeSeries_R,PlotExpResolution,NE,LWE_Labels,Current_UUID)
# write results summary to Excel
for R in range(0,NR):
for r in range(0,3):
for c in range(0,NE):
Vsheet.cell(row = r+3, column = c +CascCols[R]).value = ASummary[r,R,c]
Vsheet.cell(row = r+9, column = c +CascCols[R]).value = ASummary[r+3,R,c]
Vsheet.cell(row = r+15, column = c +CascCols[R]).value = ASummary[r+6,R,c]
Vsheet.cell(row = r+36, column = c +CascCols[R]).value = ASummary[r+9,R,c]
for d in range(0,4):
Vsheet.cell(row = d*3 + r + 21,column = c +CascCols[R]).value = AvgDecadalEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Vsheet.cell(row = r+45, column = c +CascCols[R]).value = UsePhaseSummary[r,R,c]
Vsheet.cell(row = r+51, column = c +CascCols[R]).value = UsePhaseSummary[r+3,R,c]
Vsheet.cell(row = r+57, column = c +CascCols[R]).value = UsePhaseSummary[r+6,R,c]
Vsheet.cell(row = r+78, column = c +CascCols[R]).value = UsePhaseSummary[r+9,R,c]
for d in range(0,4):
Vsheet.cell(row = d*3 + r + 63,column = c +CascCols[R]).value = AvgDecadalUseEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Vsheet.cell(row = r+87, column = c +CascCols[R]).value = MatSummary[r,R,c]
Vsheet.cell(row = r+93, column = c +CascCols[R]).value = MatSummary[r+3,R,c]
Vsheet.cell(row = r+99, column = c +CascCols[R]).value = MatSummary[r+6,R,c]
Vsheet.cell(row = r+120, column = c +CascCols[R]).value = MatSummary[r+9,R,c]
for d in range(0,4):
Vsheet.cell(row = d*3 + r + 105,column = c +CascCols[R]).value = AvgDecadalMatEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Vsheet.cell(row = r+129, column = c +CascCols[R]).value = ManSummary[r,R,c]
Vsheet.cell(row = r+135, column = c +CascCols[R]).value = ManSummary[r+3,R,c]
Vsheet.cell(row = r+141, column = c +CascCols[R]).value = ManSummary[r+6,R,c]
Vsheet.cell(row = r+162, column = c +CascCols[R]).value = ManSummary[r+9,R,c]
for d in range(0,4):
Vsheet.cell(row = d*3 + r + 147,column = c +CascCols[R]).value = AvgDecadalManEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Vsheet.cell(row = r+171, column = c +CascCols[R]).value = ForSummary[r,R,c]
Vsheet.cell(row = r+177, column = c +CascCols[R]).value = ForSummary[r+3,R,c]
Vsheet.cell(row = r+183, column = c +CascCols[R]).value = ForSummary[r+6,R,c]
Vsheet.cell(row = r+204, column = c +CascCols[R]).value = ForSummary[r+9,R,c]
for d in range(0,4):
Vsheet.cell(row = d*3 + r + 189,column = c +CascCols[R]).value = AvgDecadalForEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Vsheet.cell(row = r+213, column = c +CascCols[R]).value = RecCredit[r,R,c]
Vsheet.cell(row = r+219, column = c +CascCols[R]).value = RecCredit[r+3,R,c]
Vsheet.cell(row = r+225, column = c +CascCols[R]).value = RecCredit[r+6,R,c]
Vsheet.cell(row = r+246, column = c +CascCols[R]).value = RecCredit[r+9,R,c]
for d in range(0,4):
Vsheet.cell(row = d*3 + r + 231,column = c +CascCols[R]).value = AvgDecadalRecEms[r,R,c,d]
# Store results in time series array
if SectorString == 'pav' or SectorString == 'reb':
if SectorString == 'pav':
SectorIndex = 0
RegPos = Pav_RegionList20.index(RegionalScope)
PlotOrder_pav.append(RegPos)
if SectorString == 'reb':
SectorIndex = 1
RegPos = Reb_RegionList20.index(RegionalScope)
PlotOrder_reb.append(RegPos)
Population_All[:,RegPos,:]= Population.transpose().copy()
TimeSeries_All[0,:,RegPos,SectorIndex,:,:] = TimeSeries_R[0,0,:,:,:] # system-wide GHG, no RES
TimeSeries_All[1,:,RegPos,SectorIndex,:,:] = TimeSeries_R[0,-1,:,:,:] # system-wide GHG, full RES
TimeSeries_All[2,:,RegPos,SectorIndex,:,:] = TimeSeries_R[1,0,:,:,:] # matcycle GHG, no RES
TimeSeries_All[3,:,RegPos,SectorIndex,:,:] = TimeSeries_R[1,-1,:,:,:] # matcycle GHG, full RES
TimeSeries_All[4,:,RegPos,SectorIndex,:,:] = TimeSeries_R[2,0,:,:,:] # primary production total, no RES
TimeSeries_All[5,:,RegPos,SectorIndex,:,:] = TimeSeries_R[2,-1,:,:,:] # primary production total, full RES
TimeSeries_All[6,:,RegPos,SectorIndex,:,:] = TimeSeries_R[3,0,:,:,:] # secondary production total, no RES
TimeSeries_All[7,:,RegPos,SectorIndex,:,:] = TimeSeries_R[3,-1,:,:,:] # secondary production total, full RES
TimeSeries_All[8,:,RegPos,SectorIndex,:,:] = TimeSeries_R[4,0,:,:,:] # el + H2 share in use phase, no RES
TimeSeries_All[9,:,RegPos,SectorIndex,:,:] = TimeSeries_R[4,-1,:,:,:] # el + H2 share in use phase, full RES
TimeSeries_All[10,:,RegPos,SectorIndex,:,:] =TimeSeries_R[5,0,:,:,:] # el GHG factor, no RES
TimeSeries_All[11,:,RegPos,SectorIndex,:,:] =TimeSeries_R[5,-1,:,:,:] # el GHG factor, full RES (same as for no RES)
TimeSeries_All[12,:,RegPos,SectorIndex,:,:] =TimeSeries_R[6,0,:,:,:] # all materials stock (sum), no RES
TimeSeries_All[13,:,RegPos,SectorIndex,:,:] =TimeSeries_R[6,-1,:,:,:] # all materials stock (sum), full RES
TimeSeries_All[14,:,RegPos,SectorIndex,:,:] =TimeSeries_R[7,0,:,:,:] # use phase total energy consumption, no RES
TimeSeries_All[15,:,RegPos,SectorIndex,:,:] =TimeSeries_R[7,-1,:,:,:] # use phase total energy consumption, full RES
# net GHG impact of wood use: forest uptake + wood-related emissions from waste mgt. Pos sign for flow from system to environment:
TimeSeries_All[16,:,RegPos,SectorIndex,:,:] =TimeSeries_R[8,0,:,:,:] # net GHG impact of wood use, no RES
TimeSeries_All[17,:,RegPos,SectorIndex,:,:] =TimeSeries_R[8,-1,:,:,:] # net GHG impact of wood use, full RES
TimeSeries_All[18,:,RegPos,SectorIndex,:,:] =TimeSeries_R[9,0,:,:,:] # passenger-km, no RES
TimeSeries_All[19,:,RegPos,SectorIndex,:,:] =TimeSeries_R[9,-1,:,:,:] # passenger-km, full RES
TimeSeries_All[20,:,RegPos,SectorIndex,:,:] =TimeSeries_R[10,0,:,:,:] # heated building space, no RES
TimeSeries_All[21,:,RegPos,SectorIndex,:,:] =TimeSeries_R[10,-1,:,:,:]# heated building space, full RES
TimeSeries_All[22,:,RegPos,SectorIndex,:,:] =TimeSeries_R[11,0,:,:,:] # cooled building space, no RES
TimeSeries_All[23,:,RegPos,SectorIndex,:,:] =TimeSeries_R[11,-1,:,:,:]# cooled building space, full RES
# calculate service intensities
TimeSeries_All[24,:,RegPos,SectorIndex,:,:] =TimeSeries_All[18,:,RegPos,SectorIndex,:,:] / TimeSeries_All[0,:,RegPos,SectorIndex,:,:] # pkm/t GHG
TimeSeries_All[25,:,RegPos,SectorIndex,:,:] =TimeSeries_All[19,:,RegPos,SectorIndex,:,:] / TimeSeries_All[1,:,RegPos,SectorIndex,:,:] # pkm/t GHG
TimeSeries_All[26,:,RegPos,SectorIndex,:,:] =TimeSeries_All[18,:,RegPos,SectorIndex,:,:] / TimeSeries_All[12,:,RegPos,SectorIndex,:,:] # pkm/t Matstocks
TimeSeries_All[27,:,RegPos,SectorIndex,:,:] =TimeSeries_All[19,:,RegPos,SectorIndex,:,:] / TimeSeries_All[13,:,RegPos,SectorIndex,:,:] # pkm/t Matstocks
RCP_Matstocks = 1 # MatStocks are plotted for RCP2.6 only
if Setting == 'Cascade_pav':
# store other results
Table_Annual[0,0:-1,1,:]= AnnEms2050[1,:,:].transpose().copy()
Table_CumEms[0,0:-1,1,:]= CumEms2050[1,:,:].transpose().copy()
MatStocksTab1[0,:] = MatStocks[4,:,0,RCP_Matstocks,0].copy()
MatStocksTab1[1,:] = MatStocks[34,:,0,RCP_Matstocks,0].copy()
MatStocksTab1[2,:] = MatStocks[34,:,0,RCP_Matstocks,-1].copy()
MatStocksTab2[0,:] = MatStocks[4,:,1,RCP_Matstocks,0].copy()
MatStocksTab2[1,:] = MatStocks[34,:,1,RCP_Matstocks,0].copy()
MatStocksTab2[2,:] = MatStocks[34,:,1,RCP_Matstocks,-1].copy()
MatStocksTab3[0,:] = MatStocks[4,:,2,RCP_Matstocks,0].copy()
MatStocksTab3[1,:] = MatStocks[34,:,2,RCP_Matstocks,0].copy()
MatStocksTab3[2,:] = MatStocks[34,:,2,RCP_Matstocks,-1].copy()
if Setting == 'Cascade_reb':
# store other results
Table_Annual[1,0:5,1,:] = AnnEms2050[1,:,0:-1].transpose().copy()
Table_Annual[1,7,1,:] = AnnEms2050[1,:,-1].copy()
Table_CumEms[1,0:5,1,:] = CumEms2050[1,:,0:-1].transpose().copy()
Table_CumEms[1,7,1,:] = CumEms2050[1,:,-1].copy()
MatStocksTab1[3,:] = MatStocks[4,:,0,RCP_Matstocks,0].copy()
MatStocksTab1[4,:] = MatStocks[34,:,0,RCP_Matstocks,0].copy()
MatStocksTab1[5,:] = MatStocks[34,:,0,RCP_Matstocks,-1].copy()
MatStocksTab2[3,:] = MatStocks[4,:,1,RCP_Matstocks,0].copy()
MatStocksTab2[4,:] = MatStocks[34,:,1,RCP_Matstocks,0].copy()
MatStocksTab2[5,:] = MatStocks[34,:,1,RCP_Matstocks,-1].copy()
MatStocksTab3[3,:] = MatStocks[4,:,2,RCP_Matstocks,0].copy()
MatStocksTab3[4,:] = MatStocks[34,:,2,RCP_Matstocks,0].copy()
MatStocksTab3[5,:] = MatStocks[34,:,2,RCP_Matstocks,-1].copy()
if Setting == 'Cascade_nrb':
# store other results
Table_Annual[1,0:5,2,:] = AnnEms2050[1,:,0:-1].transpose().copy()
Table_Annual[1,7,2,:] = AnnEms2050[1,:,-1].copy()
Table_CumEms[1,0:5,2,:] = CumEms2050[1,:,0:-1].transpose().copy()
Table_CumEms[1,7,2,:] = CumEms2050[1,:,-1].copy()
MatStocksTab1[6,:] = MatStocks[4,:,0,RCP_Matstocks,0].copy()
MatStocksTab1[7,:] = MatStocks[34,:,0,RCP_Matstocks,0].copy()
MatStocksTab1[8,:] = MatStocks[34,:,0,RCP_Matstocks,-1].copy()
MatStocksTab2[6,:] = MatStocks[4,:,1,RCP_Matstocks,0].copy()
MatStocksTab2[7,:] = MatStocks[34,:,1,RCP_Matstocks,0].copy()
MatStocksTab2[8,:] = MatStocks[34,:,1,RCP_Matstocks,-1].copy()
MatStocksTab3[6,:] = MatStocks[4,:,2,RCP_Matstocks,0].copy()
MatStocksTab3[7,:] = MatStocks[34,:,2,RCP_Matstocks,0].copy()
MatStocksTab3[8,:] = MatStocks[34,:,2,RCP_Matstocks,-1].copy()
if ModelEvalListSheet.cell(Row+NE+1, 3).value == 'ME_industry_demandside_Scenario':
for mmxx in range(0,6):
SingleSectList.append(ModelEvalListSheet.cell(Row+NE+mmxx+1, 4).value)
# run the efficieny_sufficieny plots, with 6 extra single sectors in result list
CumEmsV, CumEmsV2060, AnnEmsV2030, AnnEmsV2050, AvgDecadalEmsV = ODYM_RECC_Evaluate_BarPlot_ME_Industry_Demand.main(RegionalScope,SectorString,FolderList,SingleSectList,Current_UUID)
SingleSectList = []
NE +=6 # add for extra scenarios for efficiency-sufficiency plot
if CascadeFlag2 is True: #Multi-sector: pav_reb, pav_reb_nrb, etc. Extract results for this cascade and store
CascadeFlag2 = False
Descr = 'Cascade_' + RegionalScope + '_' + SectorString
print(Descr)
for m in range(0,NE):
MultiSectorList.append(ModelEvalListSheet.cell(Row +m+1, 4).value)
GHG_TableX = ODYM_RECC_Evaluate_Table_Extract.main(RegionalScope,MultiSectorList,Current_UUID)
# write results summary as Table 2 to Excel
Gsheet = mywb4['GHG_Overview']
print('GHG_Overview_' + RegionalScope)
for r in range(0,4):
for c in range(0,6):
for R in range(0,2):
Gsheet.cell(row = r+4 + 8*R, column = c+4).value = GHG_TableX[r,c,R]
# run the cascade plots for the three sectors
ASummary, AvgDecadalEms, MatSummary, AvgDecadalMatEms, RecCredit, UsePhaseSummary, ManSummary, ForSummary, AvgDecadalUseEms, AvgDecadalManEms, AvgDecadalForEms, AvgDecadalRecEms, CumEms2050, CumEms2060, AnnEms2050, MatStocks, TimeSeries_R, MatEms, Population = ODYM_RECC_Evaluate_Cascade.main(RegionalScope,MultiSectorList,SectorString,Current_UUID)
# Collect material stocks and population:
if SectorString == 'pav_reb':
try:
MatStocks_all[:,All_RegionList7.index(RegionalScope),:,:,:,:] = np.einsum('tmSRE->tmSRE',MatStocks)
except:
None
# Export cascade results via pandas:
ColIndex = [str(mmx) for mmx in range(2016,2061)]
MatEma_R_Data = np.einsum('tSRE->ESRt',MatEms).reshape(NE*NS*NR,45)
RES_List = ['None','EoL + FSD + FYI','EoL + FSD + FYI + ReU +LTE','EoL + FSD + FYI + ReU +LTE + MSu','EoL + FSD + FYI + ReU +LTE + MSu + LWE','EoL + FSD + FYI + ReU +LTE + MSu + LWE + CaS','EoL + FSD + FYI + ReU +LTE + MSu + LWE + CaS + RiS','EoL + FSD + FYI + ReU +LTE + MSu + LWE + CaS + RiS + MIU = ALL']
RowIndex = pd.MultiIndex.from_product([RES_List,['LED','SSP1','SSP2'],['NoNewClimPol','RCP2.6']], names=('res. eff.','SSP','RCP'))
MatEma_R = pd.DataFrame(MatEma_R_Data, index=RowIndex, columns=ColIndex)
MatEma_R.to_excel(os.path.join(RECC_Paths.results_path_save,Descr + '_Mat_GHG_MtCO2.xls'), merge_cells=False)
# Export material production via pandas, sum over all materials
# PP_R_Data = np.einsum('EtSR->ESRt',TimeSeries_R[2,:,:,:,:]).reshape(NE*NS*NR,45)
# PP_R = pd.DataFrame(PP_R_Data, index=RowIndex, columns=ColIndex)
# PP_R.to_excel(os.path.join(RECC_Paths.results_path_save,Descr + '_Mat_PrimProd_Mt.xls'), merge_cells=False)
# SP_R_Data = np.einsum('EtSR->ESRt',TimeSeries_R[3,:,:,:,:]).reshape(NE*NS*NR,45)
# SP_R = pd.DataFrame(SP_R_Data, index=RowIndex, columns=ColIndex)
# SP_R.to_excel(os.path.join(RECC_Paths.results_path_save,Descr + '_Mat_SecProd_Mt.xls'), merge_cells=False)
# Create GHG overview plot
#import ODYM_RECC_GHG_Overview_V2_4
ODYM_RECC_Evaluate_GHG_Overview.main(RegionalScope,SectorString,CumEms2050,CumEms2060,TimeSeries_R,PlotExpResolution,NE,LWE_Labels,Current_UUID)
if ModelEvalListSheet.cell(Row+NE+1, 3).value == 'ME_industry_demandside_Scenario':
for mmxx in range(0,6):
SingleSectList.append(ModelEvalListSheet.cell(Row+NE+mmxx+1, 4).value)
# run the efficieny_sufficieny plots, with 6 extra single sectors in result list
CumEmsV, CumEmsV2060, AnnEmsV2030, AnnEmsV2050, AvgDecadalEmsV = ODYM_RECC_Evaluate_BarPlot_ME_Industry_Demand.main(RegionalScope,SectorString,MultiSectorList,SingleSectList,Current_UUID)
SingleSectList = []
NE +=6 # add for extra scenarios for efficiency-sufficiency plot
if Setting == 'Sensitivity_pav':
SensitiFlag1 = True
SectorString = 'pav'
NE = 11 # 11 for vehs. and 10 for buildings
SensCols = [6,18]
if Setting == 'Sensitivity_reb':
SensitiFlag1 = True
SectorString = 'reb'
NE = 10 # 11 for vehs. and 10 for buildings
SensCols = [35,47]
if Setting == 'Sensitivity_nrb':
SensitiFlag1 = True
SectorString = 'nrb'
NE = 10 # 11 for vehs. and 10 for buildings
SensCols = [63,75]
SensRows = [4,9,14,19,24,40,45,50,55,60,76,81,86,91,96,112,117,122,127,132,148,153,158,163,168,184,189,194,199,204]
if SensitiFlag1 is True:
SensitiFlag1 = False
for m in range(0,int(NE)):
FolderList.append(ModelEvalListSheet.cell(Row +m+1, 4).value)
# run the ODYM-RECC sensitivity analysis for pav
CumEms_Sens2050, CumEms_Sens2060, AnnEms2030_Sens, AnnEms2050_Sens, AvgDecadalEms, UseCumEms2050, UseCumEms2060, UseAnnEms2030, UseAnnEms2050, AvgDecadalUseEms, MatCumEms2050, MatCumEms2060, MatAnnEms2030, MatAnnEms2050, AvgDecadalMatEms, ManCumEms2050, ManCumEms2060, ManAnnEms2030, ManAnnEms2050, AvgDecadalManEms, ForCumEms2050, ForCumEms2060, ForAnnEms2030, ForAnnEms2050, AvgDecadalForEms, RecCreditCum2050, RecCreditCum2060, RecCreditAnn2030, RecCreditAnn2050, RecCreditAvgDec = ODYM_RECC_Evaluate_Sensitivity.main(RegionalScope,FolderList,SectorString,Current_UUID)
# write results summary to Excel
Ssheet = mywb['Sensitivity_' + RegionalScope]
print('Sensitivity_' + RegionalScope + '_' + SectorString)
for R in range(0,NR):
for r in range(0,3):
for c in range(0,NE):
Ssheet.cell(row = r +SensRows[0], column = c +SensCols[R]).value = AnnEms2030_Sens[r,R,c]
Ssheet.cell(row = r +SensRows[1], column = c +SensCols[R]).value = AnnEms2050_Sens[r,R,c]
Ssheet.cell(row = r +SensRows[2], column = c +SensCols[R]).value = CumEms_Sens2050[r,R,c]
Ssheet.cell(row = r +SensRows[3], column = c +SensCols[R]).value = CumEms_Sens2060[r,R,c]
for d in range(0,4):
Ssheet.cell(row = d*3 + r + SensRows[4],column = c +SensCols[R]).value = AvgDecadalEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Ssheet.cell(row = r +SensRows[5], column = c +SensCols[R]).value = UseAnnEms2030[r,R,c]
Ssheet.cell(row = r +SensRows[6], column = c +SensCols[R]).value = UseAnnEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[7], column = c +SensCols[R]).value = UseCumEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[8], column = c +SensCols[R]).value = UseCumEms2060[r,R,c]
for d in range(0,4):
Ssheet.cell(row = d*3 + r + SensRows[9],column = c +SensCols[R]).value = AvgDecadalUseEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Ssheet.cell(row = r +SensRows[10], column = c +SensCols[R]).value = MatAnnEms2030[r,R,c]
Ssheet.cell(row = r +SensRows[11], column = c +SensCols[R]).value = MatAnnEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[12], column = c +SensCols[R]).value = MatCumEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[13], column = c +SensCols[R]).value = MatCumEms2060[r,R,c]
for d in range(0,4):
Ssheet.cell(row = d*3 + r + SensRows[14],column = c +SensCols[R]).value = AvgDecadalMatEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Ssheet.cell(row = r +SensRows[15], column = c +SensCols[R]).value = ManAnnEms2030[r,R,c]
Ssheet.cell(row = r +SensRows[16], column = c +SensCols[R]).value = ManAnnEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[17], column = c +SensCols[R]).value = ManCumEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[18], column = c +SensCols[R]).value = ManCumEms2060[r,R,c]
for d in range(0,4):
Ssheet.cell(row = d*3 + r + SensRows[19],column = c +SensCols[R]).value = AvgDecadalManEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Ssheet.cell(row = r +SensRows[20], column = c +SensCols[R]).value = ForAnnEms2030[r,R,c]
Ssheet.cell(row = r +SensRows[21], column = c +SensCols[R]).value = ForAnnEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[22], column = c +SensCols[R]).value = ForCumEms2050[r,R,c]
Ssheet.cell(row = r +SensRows[23], column = c +SensCols[R]).value = ForCumEms2060[r,R,c]
for d in range(0,4):
Ssheet.cell(row = d*3 + r + SensRows[24],column = c +SensCols[R]).value = AvgDecadalForEms[r,R,c,d]
for r in range(0,3):
for c in range(0,NE):
Ssheet.cell(row = r +SensRows[25], column = c +SensCols[R]).value = RecCreditAnn2030[r,R,c]
Ssheet.cell(row = r +SensRows[26], column = c +SensCols[R]).value = RecCreditAnn2050[r,R,c]
Ssheet.cell(row = r +SensRows[27], column = c +SensCols[R]).value = RecCreditCum2050[r,R,c]
Ssheet.cell(row = r +SensRows[28], column = c +SensCols[R]).value = RecCreditCum2060[r,R,c]
for d in range(0,4):
Ssheet.cell(row = d*3 + r + SensRows[29],column = c +SensCols[R]).value = RecCreditAvgDec[r,R,c,d]
# forward counter
Row += NE
# Store overview tables
# Done for each region, overwritten each time, data for LAST REGION remain.
WFsheet = mywb4['CascadeBySector']
v = 1 # SSP1
for u in range(0,8):
for c in range(0,2):
for z in range(0,3):
WFsheet.cell(row = u+4, column = z+3 +4*c).value = Table_Annual[z,u,v,c]
WFsheet.cell(row = u+14, column = z+3 +4*c).value = Table_CumEms[z,u,v,c]
WFsheet = mywb4['MatStocksBySector']
for u in range(0,9):
for v in range(0,6):
WFsheet.cell(row = u+3 , column = v+6).value = MatStocksTab1[u,v]
WFsheet.cell(row = u+14, column = v+6).value = MatStocksTab2[u,v]
WFsheet.cell(row = u+25, column = v+6).value = MatStocksTab3[u,v]
mywb.save(os.path.join(RECC_Paths.results_path_save, 'RECC_Global_Results_SystemGHG_V2_4.xlsx'))
mywb4.save(os.path.join(RECC_Paths.results_path_save,'RECC_Global_Results_Tables_V2_4.xlsx'))
# plot pC material stocks for selected regions, for SSP1 and RCP2.6
MatStocks_pc_G = MatStocks_all[:,All_RegionList7.index('Global'),:,:,:,:] / np.einsum('t,mSRE->tmSRE',Population_All[:,Reb_RegionList20.index('Global'),1],np.ones((6,3,2,8)))
MatStocks_pc_GN = MatStocks_all[:,All_RegionList7.index('Global_North'),:,:,:,:] / np.einsum('t,mSRE->tmSRE',Population_All[:,Reb_RegionList20.index('Global_North'),1],np.ones((6,3,2,8)))
MatStocks_pc_GS = MatStocks_all[:,All_RegionList7.index('Global_South'),:,:,:,:] / np.einsum('t,mSRE->tmSRE',Population_All[:,Reb_RegionList20.index('Global_South'),1],np.ones((6,3,2,8)))
# Export pC material stocks
RowIndex = pd.MultiIndex.from_product([['Steel','Aluminium','Copper','Cement','Plastics','Timber'],['LED','SSP1','SSP2'],['Base','RCP2_6'],['No ME','+ higher yields', '+ re-use/longer use','+ material subst.','+ down-sizing','+ car-sharing','+ ride-sharing','+ more intense bld. use = All ME stratgs.']], names=('Material','SSP','RCP','ME cascade steps'))
ColIndex = [str(mmx) for mmx in range(2016,2061)]
DF_pCMatStocks_Glob = pd.DataFrame(np.einsum('tmSRE->mSREt',MatStocks_pc_G).reshape(288,45), index=RowIndex, columns=ColIndex)
DF_pCMatStocks_Glob.to_excel(os.path.join(RECC_Paths.results_path_save,'pC_MatStocks_tonsPcap_pav_reb_Global.xls'), merge_cells=False)
DF_pCMatStocks_GlobN = pd.DataFrame(np.einsum('tmSRE->mSREt',MatStocks_pc_GN).reshape(288,45), index=RowIndex, columns=ColIndex)
DF_pCMatStocks_GlobN.to_excel(os.path.join(RECC_Paths.results_path_save,'pC_MatStocks_tonsPcap_pav_reb_GlobalNorth.xls'), merge_cells=False)
DF_pCMatStocks_GlobS = pd.DataFrame(np.einsum('tmSRE->mSREt',MatStocks_pc_GS).reshape(288,45), index=RowIndex, columns=ColIndex)
DF_pCMatStocks_GlobS.to_excel(os.path.join(RECC_Paths.results_path_save,'pC_MatStocks_tonsPcap_pav_reb_GlobalSouth.xls'), merge_cells=False)
MyColorCycle = pylab.cm.tab20(np.arange(0,1,0.05)).copy() # select colors from the 'tab20' color map.
# Manually adjust colors:
MyColorCycle[0,:] = np.array([0.094117647,0.360784314,0.541176471,1]) # steel prim
MyColorCycle[1,:] = np.array([0.329411765,0.662745098,0.88627451,1]) # steel sec
MyColorCycle[2,:] = np.array([0.635294118,0.301960784,0,1]) # Al prim
MyColorCycle[3,:] = np.array([1,0.498039216,0.054901961,1]) # Al sec
MyColorCycle[4,:] = np.array([0.125490196,0.462745098,0.125490196,1]) # Cu prim
MyColorCycle[5,:] = np.array([0.423529412,0.839215686,0.423529412,1]) # Cu sec
MyColorCycle[6,:] = np.array([0.250980392,0.250980392,0.250980392,1]) # Cement prim
MyColorCycle[7,:] = np.array([0.721568627,0.721568627,0.721568627,1]) # Cement sec
MyColorCycle[8,:] = np.array([0.545098039,0.098039216,0.098039216,1]) # Plastics prim
MyColorCycle[9,:] = np.array([0.901960784,0.462745098,0.462745098,1]) # Plastics sec
MyColorCycle[10,:]= np.array([0.341176471,0.278431373,0.184313725,1]) # Wood prim
MyColorCycle[11,:]= np.array([0.68627451,0.576470588,0.411764706,1]) # Wood sec
# (3b) 6x1 Line plot of metal production, primary and secondary. Same data, but with line plot for each SSP
Scens = ['LED','SSP1','SSP2']
LWI = [0.8,1.4,0.8]
for mmS in range(0,3):
fig, ((ax1, ax2, ax3, ax4, ax5, ax6)) = plt.subplots(1, 6, sharex=True, gridspec_kw={'hspace': 0.3, 'wspace': 0.35},figsize=(15,5))
ax1.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,0,mmS,1,0], linestyle = '--', color =MyColorCycle[0,:], linewidth = LWI[1])
ax1.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,0,mmS,1,-1], linestyle = '-', color =MyColorCycle[0,:], linewidth = LWI[1])
ax1.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,0,mmS,1,0], linestyle = '--', color =MyColorCycle[1,:], linewidth = LWI[1])
ax1.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,0,mmS,1,-1], linestyle = '-', color =MyColorCycle[1,:], linewidth = LWI[1])
ax1.set_title('Steel', fontsize = 14)
ax2.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,1,mmS,1,0], linestyle = '--', color =MyColorCycle[2,:], linewidth = LWI[1])
ax2.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,1,mmS,1,-1], linestyle = '-', color =MyColorCycle[2,:], linewidth = LWI[1])
ax2.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,1,mmS,1,0], linestyle = '--', color =MyColorCycle[3,:], linewidth = LWI[1])
ax2.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,1,mmS,1,-1], linestyle = '-', color =MyColorCycle[3,:], linewidth = LWI[1])
ax2.set_title('Aluminium', fontsize = 14)
ax3.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,2,mmS,1,0], linestyle = '--', color =MyColorCycle[4,:], linewidth = LWI[1])
ax3.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,2,mmS,1,-1], linestyle = '-', color =MyColorCycle[4,:], linewidth = LWI[1])
ax3.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,2,mmS,1,0], linestyle = '--', color =MyColorCycle[5,:], linewidth = LWI[1])
ax3.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,2,mmS,1,-1], linestyle = '-', color =MyColorCycle[5,:], linewidth = LWI[1])
ax3.set_title('Copper', fontsize = 14)
ax4.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,3,mmS,1,0], linestyle = '--', color =MyColorCycle[6,:], linewidth = LWI[1])
ax4.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,3,mmS,1,-1], linestyle = '-', color =MyColorCycle[6,:], linewidth = LWI[1])
ax4.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,3,mmS,1,0], linestyle = '--', color =MyColorCycle[7,:], linewidth = LWI[1])
ax4.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,3,mmS,1,-1], linestyle = '-', color =MyColorCycle[7,:], linewidth = LWI[1])
ax4.set_title('Cement', fontsize = 14)
ax5.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,4,mmS,1,0], linestyle = '--', color =MyColorCycle[8,:], linewidth = LWI[1])
ax5.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,4,mmS,1,-1], linestyle = '-', color =MyColorCycle[8,:], linewidth = LWI[1])
ax5.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,4,mmS,1,0], linestyle = '--', color =MyColorCycle[9,:], linewidth = LWI[1])
ax5.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,4,mmS,1,-1], linestyle = '-', color =MyColorCycle[9,:], linewidth = LWI[1])
ax5.set_title('Plastics', fontsize = 14)
ax6.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,5,mmS,1,0], linestyle = '--', color =MyColorCycle[10,:], linewidth = LWI[1])
ax6.plot(np.arange(2016,2053,1),MatStocks_pc_GN[0:37,5,mmS,1,-1], linestyle = '-', color =MyColorCycle[10,:], linewidth = LWI[1])
ax6.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,5,mmS,1,0], linestyle = '--', color =MyColorCycle[11,:], linewidth = LWI[1])
ax6.plot(np.arange(2016,2053,1),MatStocks_pc_GS[0:37,5,mmS,1,-1], linestyle = '-', color =MyColorCycle[11,:], linewidth = LWI[1])
ax6.set_title('Wood', fontsize = 14)
ax1.set_xlim([2015, 2053])
ax2.set_xlim([2015, 2053])
ax3.set_xlim([2015, 2053])
ax4.set_xlim([2015, 2053])
ax5.set_xlim([2015, 2053])
ax6.set_xlim([2015, 2053])
# For global paper only:
if mmS == 1:
ax1.set_ylim([0, 2.2])
ax2.set_ylim([0, 0.2])
ax3.set_ylim([0, 0.1])
ax4.set_ylim([0, 5.5])
ax5.set_ylim([0, 2.5])
ax6.set_ylim([0, 3.5])
plt.sca(ax1)
plt.ylabel('t/cap', fontsize = 14)
ax1.set_xticks([2020,2030,2040,2050])
ax2.set_xticks([2020,2030,2040,2050])
ax3.set_xticks([2020,2030,2040,2050])
ax4.set_xticks([2020,2030,2040,2050])
ax5.set_xticks([2020,2030,2040,2050])
ax6.set_xticks([2020,2030,2040,2050])
ax1.set_xticklabels(['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
ax2.set_xticklabels(['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
ax3.set_xticklabels(['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
ax4.set_xticklabels(['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
ax5.set_xticklabels(['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
ax6.set_xticklabels(['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
plt.show()
fig_name = 'pC_Stocks_line_' + Scens[mmS] + '.png'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name), dpi = 400, bbox_inches='tight')
fig_name = 'pC_Stocks_line_' + Scens[mmS] + '.svg'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name), dpi = 400, bbox_inches='tight')
# plot time series in 5x5 plot:
# TimeSeries_All indices: NX x Nt x Nr x NV x NS x NR / indicators x time x regions x sectors x SSP x RCP
# 0: system-wide GHG, no RES 1: system-wide GHG, all RES
# 1: material-related GHG, no RES, 3: material-related GHG, all RES,
# 2: primary materials with and without RES
# 3: secondary material with and without RES
ind_5x5 = [0,2,4,6,8,14,16,18,20,22,24,26]
fin_5x5 = ['GHG_pav_5x5','GHG_reb_5x5','GHGMat_pav_5x5','GHGMat_reb_5x5','PrimMat_5x5_pav','PrimMat_5x5_reb','SecMat_5x5_pav','SecMat_5x5_reb',\
'ElH2Share_5x5_pav','ElH2Share_5x5_reb','UsePhaseEn_5x5_pav','UsePhaseEn_5x5_reb','WoodCycleGHG_pav','WoodCycleGHG_reb','passenger_km',\
'no_data_here','no_data_here','heated_m2','no_data_here','cooled_m2','passenger_km_perGHG','no_data_here','passenger_km_perMatStocks','no_data_here']
fit_5x5 = [r'System-wide GHG, pav, Mt CO$_2$-eq/yr,',r'System-wide GHG, reb, Mt CO$_2$-eq/yr,',r'Matcycle GHG, pav, Mt CO$_2$-eq/yr,',r'Matcycle GHG, reb, Mt CO$_2$-eq/yr,','Total primary material, pav, Mt/yr,',\
'Total primary material, reb, Mt/yr,','Total secondary material, pav, Mt/yr,','Total secondary material, reb, Mt/yr,',r'Share of El and H$_2$ in use phase en. cons, pav, 1,',\
r'Share of El and H$_2$ in use phase en. cons, reb, 1,','Use phase energy cons, pav, TJ,','Use phase energy cons, reb, TJ,',r'Wood cycle GHG, pav, Mt CO$_2$-eq/yr,',\
r'Wood cycle GHG, reb, Mt CO$_2$-eq/yr,','passenger-km, Mkm,','no_data','no_data','buildings, heated m², Mm²,','no_data','buildings, cooled m², Mm²,',\
'passenger-km per GHG, km/t,','no_data_here','passenger-km per material stocks, km/t,','no_data_here']
plt.rcParams['axes.labelsize'] = 7
LegendLabels = ['NoNewClimPol, no ME','NoNewClimPol, full ME','RCP2.6, no ME','RCP2.6, full ME']
SEScenLabels = ['LED','SSP1','SSP2']
# System-wide GHG, mat. GHG, and material production, with country names inside plots
Pav_label_offset = [2017,2023,2018,2050,2045,2040,2017,2026,2020,2033,2017,2017,2017,2017,2017,2033,2037,2015,2026,2028,2040,2045,2040,2040,2050]
Pav_label_pos = [0.06,0.83,0.83,0.83,0.83,0.83,0.06,0.06,0.83,0.83,0.83,0.83,0.06,0.06,0.06,0.83,0.83,0.06,0.83,0.83,0.83,0.83,0.83,0.83,0.83]
Reb_label_offset = [2038,2023,2023,2038,2048,2040,2045,2023,2025,2023,2042,2014,2020,2030,2025,2035,2050,2035,2025,2040,2045,2035,2040,2020,2032]
Reb_label_pos = [0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.06,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83]
for mmf in range(0,len(ind_5x5)):
for Sect in range(0,2):
for SEScen in range(0,3):
if Sect == 0:
RegionList20Plot = Pav_RegionList20Plot
PlotOrder = PlotOrder_pav
AxisMax = Pav_axis_5x5
if Sect == 1:
RegionList20Plot = Reb_RegionList20Plot
PlotOrder = PlotOrder_reb
AxisMax = Reb_axis_5x5
fig, axs = plt.subplots(5, 5, sharex=True, gridspec_kw={'hspace': 0.22, 'wspace': 0.5})
for plotNo in PlotOrder:
if mmf == 0: # only for GHG total plot
for mmn in range(0,45): # plot grey bar where net emisisons are negative:
if TimeSeries_All[1,mmn,plotNo,Sect,SEScen,1] < 0:
axs[plotNo//5, plotNo%5].fill_between([2016+mmn,2016+mmn+1], [0,0],[AxisMax[plotNo],AxisMax[plotNo]],linestyle = '--', facecolor =np.array([0.3,0.3,0.3,0.3]), linewidth = 0.0)
axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf] ,:,plotNo,Sect,SEScen,0],color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf]+1,:,plotNo,Sect,SEScen,0],color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf] ,:,plotNo,Sect,SEScen,1],color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf]+1,:,plotNo,Sect,SEScen,1],color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
axs[plotNo//5, plotNo%5].set_ylim(bottom=0)
# Place region labels:
if mmf == 0 and SEScen == 1:
if Sect == 0:
axs[plotNo//5, plotNo%5].text(Pav_label_offset[plotNo], Pav_label_pos[plotNo]*AxisMax[plotNo], RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
if Sect == 1:
axs[plotNo//5, plotNo%5].text(Reb_label_offset[plotNo], Reb_label_pos[plotNo]*AxisMax[plotNo], RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
else:
axs[plotNo//5, plotNo%5].text(2015, 0.12*TimeSeries_All[ind_5x5[mmf]:ind_5x5[mmf]+2,:,plotNo,Sect,SEScen,:].max(), RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
axs[plotNo//5, plotNo%5].tick_params(axis='x', labelsize=6)
axs[plotNo//5, plotNo%5].tick_params(axis='y', labelsize=6)
for axis in ['top','bottom','left','right']:
axs[plotNo//5, plotNo%5].spines[axis].set_linewidth(0.3)
# Scale axes:
if mmf == 0 and SEScen == 1:
axs[plotNo//5, plotNo%5].axis([2012, 2063, 0, AxisMax[plotNo]])
else:
if mmf == 6: # for wood cycle GHG, which are negative:
axs[plotNo//5, plotNo%5].axis([2012, 2063, 1.1*TimeSeries_All[ind_5x5[mmf]:ind_5x5[mmf]+2,:,plotNo,Sect,SEScen,:].min(), 1.1*TimeSeries_All[ind_5x5[mmf]:ind_5x5[mmf]+2,:,plotNo,Sect,SEScen,:].max()])
else:
axs[plotNo//5, plotNo%5].axis([2012, 2063, 0, 1.1*TimeSeries_All[ind_5x5[mmf]:ind_5x5[mmf]+2,:,plotNo,Sect,SEScen,:].max()])
axs[plotNo//5, plotNo%5].tick_params(axis='both',width = 0.3)
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
plt.legend(LegendLabels,shadow = False, prop={'size':7}, loc = 'upper right',bbox_to_anchor=(3.5, 1))
fig.suptitle(fit_5x5[2*mmf+Sect] +' '+ SEScenLabels[SEScen], fontsize=14)
for xm in range(0,5):
plt.sca(axs[4,xm])
plt.xticks([2020,2030,2040,2050,2060], ['2020','2030','2040','2050','2060'], rotation =90, fontsize = 6, fontweight = 'normal')
plt.show()
fig_name = fin_5x5[2*mmf+Sect] +'_'+ SEScenLabels[SEScen]
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name+'.png'), dpi = PlotExpResolution, bbox_inches='tight')
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name+'.svg'), dpi = PlotExpResolution, bbox_inches='tight')
# Main paper Fig. 1 (subset of above plots), plot Global, GN, GS, G7, China, India, SSA
Pav_label_offset7 = [2017,2023,2018,2050,2017,2017,2012.5]
Pav_label_pos7 = [0.06,0.83,0.83,0.83,0.06,0.83,0.06]
Reb_label_offset7 = [2038,2023,2023,2048,2038,2042,2012.5]
Reb_label_pos7 = [0.83,0.83,0.83,0.83,0.83,0.83,0.83]
SEScen = 1
for reg in All_RegionList7:
PlotOrder_7_pav.append(Pav_RegionList20.index(reg))
PlotOrder_7_reb.append(Reb_RegionList20.index(reg))
# Gt version, row: sectors, col: countries.
#LegendLabels = ['No new climate policy, no material efficiency strategies','No new climate policy, full material efficiency strategies','RCP2.6 (2°C policy mix), no material efficiency strategies','RCP2.6 (2°C policy mix), full material efficiency strategies']
LegendLabels = ['No new climate policy, no material efficiency strategies','No new climate policy, full material efficiency strategies','2°C policy mix, no material efficiency strategies','2°C policy mix, full material efficiency strategies']
fig, axs = plt.subplots(2, 7, sharex=True, gridspec_kw={'hspace': 0.10, 'wspace': 0.4}, figsize=(15,5))
for plotNo in np.arange(0,7):
# first row: pav
Sect = 0
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_pav[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_pav[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_pav[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_pav[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
axs[0, plotNo].set_ylim(bottom=0)
# second row: reb
Sect = 1
for mmn in range(0,45): # plot grey bar where net emisisons are negative:
if TimeSeries_All[1,mmn,PlotOrder_7_reb[plotNo],Sect,SEScen,1] < 0:
axs[1, plotNo].fill_between([2016+mmn,2016+mmn+1], [0,0],[Reb_axis_7x2[plotNo]/1000,Reb_axis_7x2[plotNo]/1000],linestyle = '--', facecolor =np.array([0.15,0.15,0.15,0.15]), linewidth = 0.0)
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_reb[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_reb[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_reb[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_reb[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
axs[1, plotNo].set_ylim(bottom=0)
axs[0, plotNo].text(Pav_label_offset7[plotNo], Pav_label_pos7[plotNo]*Pav_axis_7x2[plotNo]/1000, All_RegionList7Plot[plotNo], fontsize=9, rotation=0, fontweight='normal')
axs[1, plotNo].text(Reb_label_offset7[plotNo], Reb_label_pos7[plotNo]*Reb_axis_7x2[plotNo]/1000, All_RegionList7Plot[plotNo], fontsize=9, rotation=0, fontweight='normal')
axs[0, plotNo].tick_params(axis='x', labelsize=9)
axs[0, plotNo].tick_params(axis='y', labelsize=9)
axs[1, plotNo].tick_params(axis='x', labelsize=9)
axs[1, plotNo].tick_params(axis='y', labelsize=9)
for axis in ['top','bottom','left','right']:
axs[0, plotNo].spines[axis].set_linewidth(0.5)
axs[1, plotNo].spines[axis].set_linewidth(0.5)
axs[0, plotNo].axis([2012, 2053, 0, Pav_axis_7x2[plotNo]/1000])
axs[0, plotNo].tick_params(axis='both',width = 0.5)
axs[1, plotNo].axis([2012, 2053, 0, Reb_axis_7x2[plotNo]/1000])
axs[1, plotNo].tick_params(axis='both',width = 0.5)
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
plt.legend(LegendLabels,shadow = False, prop={'size':9}, loc = 'lower left',bbox_to_anchor=(-4.8, -0.3)) # x, y
# fig.suptitle(r'System-wide GHG, pav+reb, Mt CO$_2$-eq/yr, SSP1', fontsize=14)
for xm in range(0,7):
plt.sca(axs[1,xm])
#plt.xticks([2020,2030,2040,2050,2060], ['2020','2030','2040','2050','2060'], rotation =90, fontsize = 9, fontweight = 'normal')
plt.xticks([2020,2030,2040,2050], ['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
plt.show()
fig_name = 'Fig1_select_GHG_pav_reb_SSP1_Gt'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name+'.png'), dpi = PlotExpResolution, bbox_inches='tight')
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name+'.svg'), dpi = PlotExpResolution, bbox_inches='tight')
# Gt version, row: sectors, col: countries. tight.
#LegendLabels = ['No new climate policy, no material efficiency strategies','No new climate policy, full material efficiency strategies','RCP2.6 (2°C policy mix), no material efficiency strategies','RCP2.6 (2°C policy mix), full material efficiency strategies']
LegendLabels = ['No new climate policy, no material efficiency strategies','No new climate policy, full material efficiency strategies','2°C policy mix, no material efficiency strategies','2°C policy mix, full material efficiency strategies']
fig, axs = plt.subplots(2, 7, sharex=True, gridspec_kw={'hspace': 0.08, 'wspace': 0.4}, figsize=(15,5))
for plotNo in np.arange(0,7):
# first row: pav
Sect = 0
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_pav[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_pav[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_pav[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
axs[0, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_pav[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
axs[0, plotNo].set_ylim(bottom=0)
# second row: reb
Sect = 1
for mmn in range(0,45): # plot grey bar where net emisisons are negative:
if TimeSeries_All[1,mmn,PlotOrder_7_reb[plotNo],Sect,SEScen,1] < 0:
axs[1, plotNo].fill_between([2016+mmn,2016+mmn+1], [0,0],[Reb_axis_7x2[plotNo]/1000,Reb_axis_7x2[plotNo]/1000],linestyle = '--', facecolor =np.array([0.15,0.15,0.15,0.15]), linewidth = 0.0)
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_reb[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_reb[plotNo],Sect,SEScen,0]/1000,color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[0,:,PlotOrder_7_reb[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
axs[1, plotNo].plot(np.arange(2016,2061), TimeSeries_All[1,:,PlotOrder_7_reb[plotNo],Sect,SEScen,1]/1000,color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
axs[1, plotNo].set_ylim(bottom=0)
axs[0, plotNo].set_title(All_RegionList7Plot[plotNo], fontsize=14, rotation=0, fontweight='normal')
axs[0, plotNo].tick_params(axis='x', labelsize=9)
axs[0, plotNo].tick_params(axis='y', labelsize=9)
axs[1, plotNo].tick_params(axis='x', labelsize=9)
axs[1, plotNo].tick_params(axis='y', labelsize=9)
for axis in ['top','bottom','left','right']:
axs[0, plotNo].spines[axis].set_linewidth(0.5)
axs[1, plotNo].spines[axis].set_linewidth(0.5)
axs[0, plotNo].axis([2012, 2053, 0, Pav_axis_7x2[plotNo]/1000])
axs[0, plotNo].tick_params(axis='both',width = 0.5)
axs[1, plotNo].axis([2012, 2053, 0, Reb_axis_7x2[plotNo]/1000])
axs[1, plotNo].tick_params(axis='both',width = 0.5)
axs[0, 0].set_ylabel(' passenger vehicles \n Gt CO$_2$-eq.', fontsize = 14)
axs[1, 0].set_ylabel('residential buildings \n Gt CO$_2$-eq.', fontsize = 14)
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=1.1, linestyle='--') # Baseline, no RES
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=1.3, linestyle='-') # Baseline, full RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=1.1, linestyle='--') # RCP2.6, no RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=1.3, linestyle='-') # RCP2.6, full RES
plt.legend(LegendLabels,shadow = False, prop={'size':9}, loc = 'lower left',bbox_to_anchor=(-5.10, -0.3)) # x, y
# fig.suptitle(r'System-wide GHG, pav+reb, Mt CO$_2$-eq/yr, SSP1', fontsize=14)
for xm in range(0,7):
plt.sca(axs[1,xm])
#plt.xticks([2020,2030,2040,2050,2060], ['2020','2030','2040','2050','2060'], rotation =90, fontsize = 9, fontweight = 'normal')
plt.xticks([2020,2030,2040,2050], ['2020','2030','2040','2050'], rotation =90, fontsize = 9, fontweight = 'normal')
plt.show()
fig_name = 'Fig1_select_GHG_pav_reb_SSP1_Gt_v2'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name+'.png'), dpi = PlotExpResolution, bbox_inches='tight')
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name+'.svg'), dpi = PlotExpResolution, bbox_inches='tight')
### This is figure 1 in the RECC GLobal paper
# System-wide GHG, mat. GHG, and material production, with country names on top of plots
#for mmf in range(0,4):
# for Sect in range(0,2):
# if Sect == 0:
# RegionList20Plot = Pav_RegionList20Plot
# PlotOrder = PlotOrder_pav
# AxisMax = Pav_axis_5x5
# if Sect == 1:
# RegionList20Plot = Reb_RegionList20Plot
# PlotOrder = PlotOrder_reb
# AxisMax = Reb_axis_5x5
# fig, axs = plt.subplots(5, 5, sharex=True, gridspec_kw={'hspace': 0.6, 'wspace': 0.5})
# for plotNo in PlotOrder:
# if mmf == 0: # only for GHG total plot
# for mmn in range(0,45): # plot grey bar where net emisisons are negative:
# if TimeSeries_All[1,mmn,plotNo,Sect,1,1] < 0:
# axs[plotNo//5, plotNo%5].fill_between([2016+mmn,2016+mmn+1], [0,0],[AxisMax[plotNo],AxisMax[plotNo]],linestyle = '--', facecolor =np.array([0.3,0.3,0.3,0.3]), linewidth = 0.0)
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf] ,:,plotNo,Sect,1,0],color=BaseBrown, lw=0.8, linestyle='-') # Baseline, no RES
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf]+1,:,plotNo,Sect,1,0],color=BaseBrown, lw=0.99, linestyle='--') # Baseline, full RES
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf] ,:,plotNo,Sect,1,1],color=BaseBlue, lw=0.8, linestyle='-') # RCP2.6, no RES
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf]+1,:,plotNo,Sect,1,1],color=BaseBlue, lw=0.99, linestyle='--') # RCP2.6, full RES
# axs[plotNo//5, plotNo%5].set_ylim(ymin=0)
# axs[plotNo//5, plotNo%5].set_title(RegionList20Plot[plotNo], fontsize=7)
# #axs[plotNo//5, plotNo%5].set_yticklabels(fontsize = 6)
# axs[plotNo//5, plotNo%5].tick_params(axis='x', labelsize=6)
# axs[plotNo//5, plotNo%5].tick_params(axis='y', labelsize=6)
# for axis in ['top','bottom','left','right']:
# axs[plotNo//5, plotNo%5].spines[axis].set_linewidth(0.3)
# if mmf == 0:
# axs[plotNo//5, plotNo%5].axis([2012, 2063, 0, AxisMax[plotNo]])
# axs[plotNo//5, plotNo%5].tick_params(axis='both',width = 0.3)
#
# plt.plot([2010,2011],[0,0],color=BaseBrown, lw=0.8, linestyle='-') # Baseline, no RES
# plt.plot([2010,2011],[0,0],color=BaseBrown, lw=0.99, linestyle='--') # Baseline, full RES
# plt.plot([2010,2011],[0,0],color=BaseBlue, lw=0.8, linestyle='-') # RCP2.6, no RES
# plt.plot([2010,2011],[0,0],color=BaseBlue, lw=0.99, linestyle='--') # RCP2.6, full RES
# plt.legend(LegendLables,shadow = False, prop={'size':7}, loc = 'upper right',bbox_to_anchor=(3.5, 1))
#
# fig.suptitle(fit_5x5[2*mmf+Sect], fontsize=14)
# for xm in range(0,5):
# plt.sca(axs[4,xm])
# plt.xticks([2020,2030,2040,2050,2060], ['2020','2030','2040','2050','2060'], rotation =90, fontsize = 6, fontweight = 'normal')
# plt.show()
# fig_name = fin_5x5[2*mmf+Sect]
# fig.savefig(os.path.join(RECC_Paths.results_path,fig_name), dpi = PlotExpResolution, bbox_inches='tight')
# OLD version of 5x5 plots for SSP1 only.
## System-wide GHG, mat. GHG, and material production, with country names inside plots
#Pav_label_offset = [2017,2023,2018,2050,2045,2040,2017,2026,2020,2033,2017,2017,2017,2017,2017,2033,2037,2015,2026,2028,2040,2045,2040,2040,2050]
#Pav_label_pos = [0.06,0.83,0.83,0.83,0.83,0.83,0.06,0.06,0.83,0.83,0.83,0.83,0.06,0.06,0.06,0.83,0.83,0.06,0.83,0.83,0.83,0.83,0.83,0.83,0.83]
#Reb_label_offset = [2038,2023,2023,2038,2048,2040,2045,2023,2025,2023,2042,2014,2020,2030,2025,2035,2050,2035,2025,2040,2045,2035,2040,2020,2032]
#Reb_label_pos = [0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.06,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83,0.83]
#
#for mmf in range(0,6):
# for Sect in range(0,2):
# if Sect == 0:
# RegionList20Plot = Pav_RegionList20Plot
# PlotOrder = PlotOrder_pav
# AxisMax = Pav_axis_5x5
# if Sect == 1:
# RegionList20Plot = Reb_RegionList20Plot
# PlotOrder = PlotOrder_reb
# AxisMax = Reb_axis_5x5
# fig, axs = plt.subplots(5, 5, sharex=True, gridspec_kw={'hspace': 0.22, 'wspace': 0.5})
# for plotNo in PlotOrder:
# if mmf == 0: # only for GHG total plot
# for mmn in range(0,45): # plot grey bar where net emisisons are negative:
# if TimeSeries_All[1,mmn,plotNo,Sect,1,1] < 0:
# axs[plotNo//5, plotNo%5].fill_between([2016+mmn,2016+mmn+1], [0,0],[AxisMax[plotNo],AxisMax[plotNo]],linestyle = '--', facecolor =np.array([0.3,0.3,0.3,0.3]), linewidth = 0.0)
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf] ,:,plotNo,Sect,1,0],color=BaseBrown, lw=0.8, linestyle='-') # Baseline, no RES
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf]+1,:,plotNo,Sect,1,0],color=BaseBrown, lw=0.99, linestyle='--') # Baseline, full RES
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf] ,:,plotNo,Sect,1,1],color=BaseBlue, lw=0.8, linestyle='-') # RCP2.6, no RES
# axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), TimeSeries_All[ind_5x5[mmf]+1,:,plotNo,Sect,1,1],color=BaseBlue, lw=0.99, linestyle='--') # RCP2.6, full RES
# axs[plotNo//5, plotNo%5].set_ylim(bottom=0)
# if mmf == 0:
# if Sect == 0:
# axs[plotNo//5, plotNo%5].text(Pav_label_offset[plotNo], Pav_label_pos[plotNo]*AxisMax[plotNo], RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
# if Sect == 1:
# axs[plotNo//5, plotNo%5].text(Reb_label_offset[plotNo], Reb_label_pos[plotNo]*AxisMax[plotNo], RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
# else:
# axs[plotNo//5, plotNo%5].text(2015, 0.12*TimeSeries_All[ind_5x5[mmf]:ind_5x5[mmf]+2,:,plotNo,Sect,1,:].max(), RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
# axs[plotNo//5, plotNo%5].tick_params(axis='x', labelsize=6)
# axs[plotNo//5, plotNo%5].tick_params(axis='y', labelsize=6)
# for axis in ['top','bottom','left','right']:
# axs[plotNo//5, plotNo%5].spines[axis].set_linewidth(0.3)
# if mmf == 0:
# axs[plotNo//5, plotNo%5].axis([2012, 2063, 0, AxisMax[plotNo]])
# else:
# axs[plotNo//5, plotNo%5].axis([2012, 2063, 0, 1.1*TimeSeries_All[ind_5x5[mmf]:ind_5x5[mmf]+2,:,plotNo,Sect,1,:].max()])
# axs[plotNo//5, plotNo%5].tick_params(axis='both',width = 0.3)
#
# plt.plot([2010,2011],[0,0],color=BaseBrown, lw=0.8, linestyle='-') # Baseline, no RES
# plt.plot([2010,2011],[0,0],color=BaseBrown, lw=0.99, linestyle='--') # Baseline, full RES
# plt.plot([2010,2011],[0,0],color=BaseBlue, lw=0.8, linestyle='-') # RCP2.6, no RES
# plt.plot([2010,2011],[0,0],color=BaseBlue, lw=0.99, linestyle='--') # RCP2.6, full RES
# plt.legend(LegendLables,shadow = False, prop={'size':7}, loc = 'upper right',bbox_to_anchor=(3.5, 1))
#
# fig.suptitle(fit_5x5[2*mmf+Sect], fontsize=14)
# for xm in range(0,5):
# plt.sca(axs[4,xm])
# plt.xticks([2020,2030,2040,2050,2060], ['2020','2030','2040','2050','2060'], rotation =90, fontsize = 6, fontweight = 'normal')
# plt.show()
# fig_name = fin_5x5[2*mmf+Sect]
# fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name), dpi = PlotExpResolution, bbox_inches='tight')
# fig_namev = fiv_5x5[2*mmf+Sect]
# fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_namev), dpi = PlotExpResolution, bbox_inches='tight')
#GHG intensity plot
RegionList20Plot = Pav_RegionList20Plot
PlotOrder = PlotOrder_pav
fig, axs = plt.subplots(5, 5, sharex=True, gridspec_kw={'hspace': 0.22, 'wspace': 0.5})
for plotNo in PlotOrder:
axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), 3.6 * 1e6 * TimeSeries_All[10,:,plotNo,0,1,0],color=BaseBrown, lw=0.8, linestyle='-') # Baseline, no RES
axs[plotNo//5, plotNo%5].plot(np.arange(2016,2061), 3.6 * 1e6 * TimeSeries_All[10,:,plotNo,0,1,1],color=BaseBlue, lw=0.8, linestyle='-') # RCP2.6, no RES
axs[plotNo//5, plotNo%5].set_ylim(bottom=0)
axs[plotNo//5, plotNo%5].text(2015, 0.12 * 3.6 * 1e6 * TimeSeries_All[10,:,plotNo,0,1,:].max(), RegionList20Plot[plotNo], fontsize=6, rotation=0, fontweight='normal')
axs[plotNo//5, plotNo%5].text(2045, 0.86 * 3.6 * 1e6 * TimeSeries_All[10,:,plotNo,0,1,:].max(), str(np.round(3.6 * 1e6 * TimeSeries_All[10,-1,plotNo,0,1,0])), fontsize=4, rotation=0, fontweight='normal', color = BaseBrown)
axs[plotNo//5, plotNo%5].text(2045, 0.56 * 3.6 * 1e6 * TimeSeries_All[10,:,plotNo,0,1,:].max(), str(np.round(3.6 * 1e6 * TimeSeries_All[10,-1,plotNo,0,1,1])), fontsize=4, rotation=0, fontweight='normal', color = BaseBlue)
axs[plotNo//5, plotNo%5].tick_params(axis='x', labelsize=6)
axs[plotNo//5, plotNo%5].tick_params(axis='y', labelsize=6)
for axis in ['top','bottom','left','right']:
axs[plotNo//5, plotNo%5].spines[axis].set_linewidth(0.3)
axs[plotNo//5, plotNo%5].axis([2012, 2063, 0, 4.0 * 1e6 * TimeSeries_All[10,:,plotNo,0,1,:].max()])
axs[plotNo//5, plotNo%5].tick_params(axis='both',width = 0.3)
plt.plot([2010,2011],[0,0],color=BaseBrown, lw=0.8, linestyle='-') # Baseline, no RES
plt.plot([2010,2011],[0,0],color=BaseBlue, lw=0.8, linestyle='-') # RCP2.6, full RES
plt.legend(['NoNewClimPol','RCP2.6'],shadow = False, prop={'size':7}, loc = 'upper right',bbox_to_anchor=(3.2, 1))
fig.suptitle(r'GHG intensity of electricity by region, g CO$_2$-eq/kWh', fontsize=14)
for xm in range(0,5):
plt.sca(axs[4,xm])
plt.xticks([2020,2030,2040,2050,2060], ['2020','2030','2040','2050','2060'], rotation =90, fontsize = 6, fontweight = 'normal')
plt.show()
fig_name = 'GHG_intensity.png'
fig.savefig(os.path.join(RECC_Paths.results_path_save,fig_name), dpi = PlotExpResolution, bbox_inches='tight')
# Excel export global data via pandas:
# TimeSeries_All indices: NX x Nt x Nr x NV x NS x NR / indicators x time x regions x SSP x RCP
ColIndex = [str(mmx) for mmx in range(2016,2061)]
if len(PlotOrder_pav) == 25: # only if data for all regions were exported
# pav:
DF_Data_pav = np.einsum('XtrSR->XrSRt',TimeSeries_All[0:2,:,:,0,:,:]).reshape(2*25*3*2,45)
RowIndex = pd.MultiIndex.from_product([['no ME','full ME'],Pav_RegionList20Plot,['LED','SSP1','SSP2'],['NoNewClimPol','RCP2.6']], names=('res. eff.','region','SSP','RCP'))
DF_pav_global = pd.DataFrame(DF_Data_pav, index=RowIndex, columns=ColIndex)
DF_pav_global.to_excel(os.path.join(RECC_Paths.results_path_save,'Fig_GHG_pav_5x5.xls'), merge_cells=False)
#print(ColIndex)
#print(RowIndex)
if len(PlotOrder_reb) == 25: # only if data for all regions were exported
# reb:
DF_Data_reb = np.einsum('XtrSR->XrSRt',TimeSeries_All[0:2,:,:,1,:,:]).reshape(2*25*3*2,45)
RowIndex = pd.MultiIndex.from_product([['no ME','full ME'],Reb_RegionList20Plot,['LED','SSP1','SSP2'],['NoNewClimPol','RCP2.6']], names=('res. eff.','region','SSP','RCP'))
DF_reb_global = pd.DataFrame(DF_Data_reb, index=RowIndex, columns=ColIndex)
DF_reb_global.to_excel(os.path.join(RECC_Paths.results_path_save,'Fig_GHG_reb_5x5.xls'), merge_cells=False)
### Legend plot for metal flows
LLegendLabels = ['(dark) Primary material production, no ME','(dark) Primary material production, full ME','(bright) Secondary material production, no ME','(bright) Secondary material production, full ME']
fig = plt.figure(figsize=(5,8))
ax1 = plt.axes([0.08,0.08,0.85,0.9])
plt.plot([2016,2017],[0,0],color=np.array([0,0,0,1]), lw=LWI[1], linestyle='--')
plt.plot([2016,2017],[0,0],color=np.array([0,0,0,1]), lw=LWI[1], linestyle='-')
plt.plot([2016,2017],[0,0],color=np.array([0.5,0.5,0.5,1]), lw=LWI[1], linestyle='--')
plt.plot([2016,2017],[0,0],color=np.array([0.5,0.5,0.5,1]), lw=LWI[1], linestyle='-')
plt.legend(LLegendLabels,shadow = False, prop={'size':8}, loc = 'upper right')
plt.show()
fig.savefig(os.path.join(RECC_Paths.results_path_save,'Legend_Matflows.png'), dpi = PlotExpResolution, bbox_inches='tight')
### Legend plot for metal stocks
LLegendLabels = ['(dark) Global North material stocks/capita, no ME','(dark) Global North material stocks/capita, full ME','(bright) Global South material stocks/capita, no ME','(bright) Global South material stocks/capita, full ME']
fig = plt.figure(figsize=(5,8))
ax1 = plt.axes([0.08,0.08,0.85,0.9])