Skip to content

Latest commit

 

History

History
43 lines (35 loc) · 3.68 KB

File metadata and controls

43 lines (35 loc) · 3.68 KB

Dacon 2022 코드 유사성 판단 AI 경진대회

대회 링크: https://dacon.io/competitions/official/235900/overview/description

코드 설명

https://dacon.io/codeshare/5159

hyperparameter

  • model: klue/roberta-base

    1. epoch_num=5, label_num=2, learning_rate=2e-5,train_test_split=0.2 ➡️ accuracy:0.97, public score:0.7924689297
    2. epoch_num=10, label_num=2, learning_rate=2e-5,train_test_split=0.2 ➡️ accuracy:0.97, public score:0.7943424226
    3. epoch_num=10, label_num=2, learning_rate=1e-5,train_test_split=0.1, seed=100 ➡️ accuracy:0.97, public score:0.8014654053

    📌 label_num=1로 할 경우 RuntimeError: Found dtype Long but expected Float 발생 (참고: https://stackoverflow.com/questions/70490710/runtimeerror-found-dtype-long-but-expected-float-when-fine-tuning-using-trainer)
    📌 klue/roberta-large도 해보면 좋을듯
    📌 학습이 진행됨에 따라 갑자기 accuracy 확 낮아지는 경우가 꽤 있는데 이럴 때마다 학습률 줄이는 방식 도입?!
    -> klue 경우 한국어에 대한 pretrained model 이기 때문에 code와는 맞지 않는다고 판단


  • model: GraphCodeBERT

    1. epoch_num=8, label_num=2, learning_rate=2e-5,train_test_split=0.1, MAX_LEN = 256, batch_size = 16, train_dataset = 46000(sample_train.csv+custom 27000) ➡️ accuracy:0.975129, public score: 0.9478760898
    2. epoch_num=7, label_num=2, learning_rate=2e-5,train_test_split=0.1, MAX_LEN = 256, batch_size = 16, train_dataset = pretrained model(1.) + 45088(custom) ➡️ accuracy:0.979596, public score: 0.9552958635

    📌 MAX_LEN = 512 / batch_size = 32일 경우 RuntimeError: CUDA out of memory
    -> 하드웨어상 MAX_LEN = 512이 가능해진다면 model_2에서 score가 더 오를 수 있을 듯


  • model: CodeBERT
    1. 기존 klue/roberta-base fine-tuning 시키는 모델에서 모델만 바꿈
      model: microsoft/codeBERT-base, learning_rate = 1e-5, MAX_LEN = 512, epoch_num = 10, batch_size = 16 ➡️ accuracy: 0.97, public score:0.8968280467
    2. 6/8 model: microsoft/codeBERT-base, learning_rate = 1e-5, MAX_LEN = 512, epoch_num = 10, batch_size = 16, optimizer=AdamW(weight_decay=0.0), scheduler = transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=5, num_training_steps=5), metric=accuarcy ➡️ accuracy: 0.97, public score:0.8627898349
    3. 6/9 model: microsoft/codeBERT-base, learning_rate = 1e-5, MAX_LEN = 512, epoch_num = 10, batch_size = 16, optimizer=AdamW(weight_decay=0.1), scheduler = transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=5, num_training_steps=5), trainset=new_trainset ➡️ accuracy: 0.96, public score: 0.9345019477
    4. 6/10 model: microsoft/codeBERT-base, learning_rate = 1e-5, MAX_LEN = 512, epoch_num = 10, batch_size = 16, optimizer=AdamW(weight_decay=0.1), scheduler = transformers.get_cosine_schedule_with_warmup(optimizer,num_warmup_steps=5, num_training_steps=5), trainset=new_trainset(40000), +preprocess(train_set) ➡️ accuracy: 0.96, pulbic score: 0.9528287887
    5. 6/10 model: microsoft/codeBERT-base, learning_rate = 2e-5, MAX_LEN = 512, epoch_num = 7, batch_size = 16, optimizer=AdamW(weight_decay=0.1), scheduler = transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=5, num_training_steps=5), trainset=new_trainset(45088), +preprocess(train_set) ➡️ accuracy: 0.97, public score: 0.9553515118 ⭐️최종 submission

결과

  • final code: microsoft-codeBERT/submission8
  • private score: 0.95526 (43/337, 13%)

개선 방안

  • sentence BERT 사용
  • MLM: DOBF 방식 사용
  • 좀 더 많은 시도로 적절한 hyperparameter 찾기
  • BM25 등의 알고리즘으로 모델에 최적화된 큰 사이즈의 데이터셋 구축