-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdp_pred.py
99 lines (90 loc) · 3.57 KB
/
dp_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from collections import defaultdict
import torch
from torch.nn.functional import normalize
import pygtrie
# leaves out double quote and \\
ASCII = "!#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnopqrstuvwxyz{|}~"
ASCII2IDX = {c:i for i, c in enumerate(ASCII)}
def precomp(labe_probs, neighbs, T):
"""
labe_probs - T x nlabes, normalized along dim 1
neighbs - nesz length list of tags
"""
trie = pygtrie.CharTrie()
labe2idx = ASCII2IDX
# put all subsequences
# [trie.__setitem__(''.join(ne[i:j]), True)
# for ne in neighbs for i in range(len(ne)) for j in range(i+1, min(len(ne), i+T)+1)]
[trie.__setitem__(ne[i:j], True)
for ne in neighbs for i in range(len(ne)) for j in range(i+1, min(len(ne), i+T)+1)]
# now we can get cost for every start position.
# Note we'll have trie[pfx][t] = cost of that prefix STARTING AT t
prev, start = None, None
for key in trie.iterkeys():
lastlabe = key[-1]
if len(key) == 1:
cost = (1-labe_probs[:, labe2idx[lastlabe]]) # the "cost"
start = 0
elif prev is None: # non 1-length restart; figure out where we are
prev = trie[key[:-1]]
start = len(key) - 1
cost = prev[:-1] + (1-labe_probs[start:, labe2idx[lastlabe]])
else:
# print(key, start)
# print(prev)
cost = prev[:-1] + (1-labe_probs[start:, labe2idx[lastlabe]])
trie[key] = cost
if not trie.has_subtrie(key): # the terminal subsequence
prev, start = None, None
else:
prev = cost
start += 1
return trie
def dp_single(labe_probs, neighbs, labe2idx, c):
"""
labe_probs - T x nlabes, normalized along dim 1
neighbs - nesz length list
"""
T, nlabes = labe_probs.size()
# first map labels to ascii strings so this is all simpler
assert len(labe2idx) <= len(ASCII)
myneighbs = [''.join([ASCII[labe2idx[labe]] for labe in ne]) for ne in neighbs]
trie = precomp(labe_probs, myneighbs, T)
keysbylen = defaultdict(list)
[keysbylen[len(key)].append(key) for key in trie]
table = [0]*(T+1)
#rultable = [0]*(T+1)
rultable = None
bps = [None]*(T+1)
for t in range(1, T+1):
best_cost, best_choice = float("inf"), None
for k in range(t):
suff_len = t-k
prev_cost = table[k]
# now we need the best match between x[k:t] and anything of size t-k
# now find all contiguous spans k:t
best_k_cost, best_k_choice = float("inf"), None
for l, labegram in enumerate(keysbylen[suff_len]):
wrongcost = trie[labegram][k] # cost starting at k
if wrongcost < best_k_cost:
best_k_cost = wrongcost
best_k_choice = k, suff_len, l
if best_k_cost + c + prev_cost < best_cost:
best_cost = best_k_cost + c + prev_cost
best_choice = best_k_choice
#rultable[t] = best_k_cost + rultable[k]
table[t] = best_cost
bps[t] = best_choice
return table, bps, trie, keysbylen, rultable
def backtrack(bps, keysbylen, idx2labe):
preds = []
k, suff_len, l = bps[-1]
preds.append(keysbylen[suff_len][l])
while k > 0:
k, suff_len, l = bps[k]
preds.append(keysbylen[suff_len][l])
#rulpreds = []
#rulpreds.extend([pred for pred in preds[::-1]])
num_copies = len(preds)
rulpreds = [idx2labe[ASCII2IDX[c]] for pred in reversed(preds) for c in pred]
return rulpreds, num_copies