-
Notifications
You must be signed in to change notification settings - Fork 0
/
nucky.pyx
executable file
·394 lines (370 loc) · 15.8 KB
/
nucky.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from collections import defaultdict, OrderedDict
cimport numpy as np
import numpy as np
def make_database(neighbs):
cdef int i, j, n, N, N_i
subs = defaultdict(list)
N = len(neighbs)
for n in range(N):
ne = neighbs[n]
N_i = len(ne)
for i in range(N_i):
#for i in range(len(ne)):
for j in range(i+1, N_i+1):
subs[tuple(ne[i:j])].append((n, i, j))
return subs
# this assumes nts are ints and maps back to string
def backtrack(nt, neighbs, bps, l, r):
cdef int cX = -1
cdef int cR = -2
cdef int cS = -3
cdef int cC = -4
cdef dict tostrnt = {-1: 'X', -2: 'R', -3: 'S', -4: 'C', -5: 'S0'}
stuff = None
for nt1, stuff1 in bps[l][r]:
if nt1 == nt:
stuff = stuff1
break
assert stuff is not None
if stuff[0] == cX and not isinstance(stuff[1], tuple):
return ('X',) + stuff[1:]
elif stuff[0] == cR and not isinstance(stuff[1], tuple):
return ('R',) + stuff[1:]
elif nt == (cS,) and not isinstance(stuff[1], tuple):
return ('S',) + stuff # stuff is (m, l, r)
#print(nt, "stuff is", stuff)
k, leftnt, rightnt = stuff
left = backtrack(leftnt, neighbs, bps, l, k)
right = backtrack(rightnt, neighbs, bps, k, r)
return [(tostrnt[nt[0]],) + nt[1:], left, right]
# about 15x faster than python implementation
def parse(x, neighbs, maxx_sz):
cdef int i, j, k, N, length, scost, rcost, ccost, casint
cdef int l, r, lnt, lm, ll, lr, lc, rnt, rm, rl, rr, rc
cdef int imaxx_sz = maxx_sz
cdef int cX = -1
cdef int cR = -2
cdef int cS = -3
cdef int cC = -4
N = len(x)
# just guessing how many times a thing could be repeated...
table = np.zeros((N, N+1, imaxx_sz, 5), dtype=np.dtype('i'))
tlens = np.zeros((N, N+1), dtype=np.dtype('i'))
# memory views or whatever
cdef int [:, :, :, :] tablev = table
cdef int [:, :] tlensv = tlens
cdef list bps = [] # making this a defaultdict is very slightly slower
subs = make_database(neighbs)
# base stuff
#for i in range(len(x)):
for i in range(N):
bps.append([])
# make dummy stuff
for j in range(N+1):
bps[i].append([])
#for j in range(i+1, len(x)+1):
for j in range(i+1, N+1):
key = tuple(x[i:j])
if key in subs:
# everything can either be a regular NT or a special one
for (m, l, r) in subs[key]:
# fmt is char, m, l, r, cost
tablev[i][j][tlensv[i][j]][0] = cX; tablev[i][j][tlensv[i][j]][1] = m
tablev[i][j][tlensv[i][j]][2] = l; tablev[i][j][tlensv[i][j]][3] = r
tlensv[i][j] += 1
#table[i][j].append((('X', m, l, r), 0))
bps[i][j].append(((cX, m, l, r), (cX, m, l, r)))
# do a unary R -> expansion
tablev[i][j][tlensv[i][j]][0] = cR; tablev[i][j][tlensv[i][j]][1] = m
tablev[i][j][tlensv[i][j]][2] = l
tlensv[i][j] += 1
#table[i][j].append((('R', m, l), 0))
bps[i][j].append(((cR, m, l), (cR, m, l, r)))
# do a unary S -> expansion
tablev[i][j][tlensv[i][j]][0] = cS
tablev[i][j][tlensv[i][j]][4] = 1
tlensv[i][j] += 1
#table[i][j].append((('S',), 1))
bps[i][j].append(((cS,), subs[key][0])) # just take the first; doesn't matter
elif j == i+1: # can't generate a word
assert False
# all the substring matches are already there
skey = (cS,)
#for length in range(2, len(x)+1):
for length in range(2, N+1):
#for i in range(len(x)-length+1):
for i in range(N-length+1):
# if (i, i+length) in table: # nothing to do; we already have optimal tiling
# continue
if tlensv[i][i+length] > 0:
continue
#bests = {}
bests = OrderedDict() # actually {} should be ordered too
for k in range(i+1, i+length):
#if (i, k) in table and (k, i+length) in table:
if tlensv[i][k] > 0 and tlensv[k][i+length] > 0:
for l in range(tlensv[i][k]):
lnt = tablev[i][k][l][0]; lm = tablev[i][k][l][1]; ll = tablev[i][k][l][2]
lr = tablev[i][k][l][3]; lc = tablev[i][k][l][4]
for r in range(tlensv[k][i+length]):
rnt = tablev[k][i+length][r][0]; rm = tablev[k][i+length][r][1]
rl = tablev[k][i+length][r][2]; rr = tablev[k][i+length][r][3]
rc = tablev[k][i+length][r][4]
# for lnt, lc in table[i][k]:
# for rnt, rc in table[k][i+length]:
if lnt == cX and rnt == cC and lm == rm:
#if lnt[0] == 'X' and rnt[0] == 'C' and lnt[1] == rnt[1]:
if rl >= lr:
#if rnt[2] >= lnt[3]: # C's l >= X's r
scost = lc + rc + 1 # S -> X^m_:r C^m_s>=r
if skey not in bests or scost < bests[skey][0]:
bests[skey] = (scost, k, (cX, lm, ll, lr), (cC, rm, rl))
#bests[skey] = (scost, k, lnt, rnt)
# if rnt[2] >= lnt[3]: # C's l >= X's r
rcost = lc + rc # R^m_s -> X^m_s:r C^m_t>=r
rkey = (cR, lm, ll)
#rkey = ('R', lnt[1], lnt[2]) # (R, m, l)
if rkey not in bests or rcost < bests[rkey][0]:
bests[rkey] = (rcost, k, (cX, lm, ll, lr), (cC, rm, rl))
#bests[rkey] = (rcost, k, lnt, rnt)
elif lnt == cS:
#elif lnt[0] == 'S':
if rnt == cS:
#if rnt[0] == 'S':
scost = lc + rc
if skey not in bests or scost < bests[skey][0]:
bests[skey] = (scost, k, skey, skey)
#bests[skey] = (scost, k, lnt, rnt)
elif rnt == cR:
#elif rnt[0] == 'R':
ccost = lc + rc
ckey = (cC, rm, rl) # (C, m, l)
#ckey = ('C', rnt[1], rnt[2]) # (C, m, l)
if ckey not in bests or ccost < bests[ckey][0]:
bests[ckey] = (ccost, k, skey, (cR, rm, rl))
#bests[ckey] = (ccost, k, lnt, rnt)
for key, rest in bests.items():
tablev[i][i+length][tlensv[i][i+length]][0] = key[0]
if tablev[i][i+length][tlensv[i][i+length]][0] != cS:
tablev[i][i+length][tlensv[i][i+length]][1] = key[1]
tablev[i][i+length][tlensv[i][i+length]][2] = key[2]
if tablev[i][i+length][tlensv[i][i+length]][0] == cX:
tablev[i][i+length][tlensv[i][i+length]][3] = key[3]
tablev[i][i+length][tlensv[i][i+length]][4] = rest[0]
tlensv[i][i+length] += 1
#table[i][i+length].append((key, rest[0]))
bps[i][i+length].append((key, rest[1:]))
return table, bps, subs
#### Below functions should be identical to ones in cky; just duplicating so we only need 1 file
def movesfromtree(tree, movelist):
if tree[0] != ('S',) and not isinstance(tree[1], list):
movelist.append(tree[:-1])
else:
if tree[0][0] == 'X':
movelist.append(tree[0][:-1])
for child in tree[1]:
movesfromtree(child, movelist)
def postproc_nbtree(tree, curri, earliest=True):
"""
consumes outputs of fixtree; removes R's etc
if earliest does earliest replace, which should behave the same as the initial impl
returns tree where nodes have format (NT, neidx, l, r, i, skip, ntokens_in_subtree)
"""
if isinstance(tree, tuple):
#nt, neidx, l, r = tree
tree = list(tree) + [curri, 0] # for insloc, skip
tree.append(tree[3] - tree[2]) # for subtree size
return tree
root, children = tree
if root[0] == 'X':
#nt, neidx, l, r = root
nuroot = list(root) + [curri, 0]
lastr = nuroot[3]
size = (nuroot[3] - nuroot[2]) # size of this subtree so far
curri += size # increment idx from left with size so far
else:
assert len(root) == 1 # should only be an S if topmost one
nuroot = root
size = 0
nuchildren, repidx = [], -1
for child in children:
ppchild = postproc_nbtree(child, curri, earliest=earliest)
csize = ppchild[-1] if len(ppchild) == 7 else ppchild[0][-1]
curri += csize
size += csize
if len(ppchild) == 7 and ppchild[0] == 'R': # an R leaf
_, cneidx, cl, cr, _, _, _ = ppchild
assert cneidx == nuroot[1]
skip = cl - lastr
assert repidx != -1
if len(nuchildren[repidx]) == 7: # tree doing replace is a leaf
nuchildren[repidx][5] = skip
else: # a tree
nuchildren[repidx][0][5] = skip
lastr = cr
repidx = -1
else: # only ignore R children
nuchildren.append(ppchild)
if repidx == -1 or not earliest:
repidx = len(nuchildren) - 1
if root[0] == 'X': # update lastr
nuroot[3] = lastr
nuroot.append(size)
return [nuroot, nuchildren]
# Rule1: if S -> Y C, make it Y -> C's children
# Rule2: collapse everything else
def fixtree(tree):
"""
accepts a binary tree but returns nonbinary one
"""
if isinstance(tree, tuple): # a leaf
return tree # or maybe [tree, []]
root, left, right = tree
if root[0] == 'S' and right[0][0] == 'C': # S -> X C
assert left[0] == 'X'
# connect C's left and right children to X
cltree = fixtree(right[1]) # an S
crtree = fixtree(right[2]) # an R
nuchildren = []
if isinstance(right[1], tuple) or cltree[0][0] == 'X': # an S-leaf
nuchildren.append(cltree) # cltree needs to be an S thing
else: # an S-tree, so collapse up its children
nuchildren.extend(cltree[1])
if isinstance(right[2], tuple): # it's an R-leaf, so just append
nuchildren.append(crtree)
else: # it has its own children, which we want to collapse
nuchildren.extend(crtree[1])
# now we have X -> C's children
xtree = [left, nuchildren] # might wanna do tuple(left)?
return xtree
# otherwise I think we just always collapse?
nuchildren = []
ltree = fixtree(left)
if isinstance(left, tuple) or ltree[0][0] == 'X':
assert left[0] in ['X', 'S', ('S',)] # will be ('S',) if ltree[0][0] == 'X'
if root[0] == 'R': # change NT to R so we know it's not actually put in now
ltree = ('R',) + ltree[1:]
nuchildren.append(ltree)
else:
#assert left[0][0] == 'S' # i think we can merge
assert ltree[0][0] == 'S'
nuchildren.extend(ltree[1])
rtree = fixtree(right)
if isinstance(right, tuple) or rtree[0][0] == 'X': # a tree headed by X
nuchildren.append(rtree)
else: # merge
nuchildren.extend(rtree[1])
return [root, nuchildren]
def get_movetree(tree):
ftree = fixtree(tree)
if ftree[0][0] != 'S': # root must've been an S -> X C
assert ftree[0][0] == 'X'
ftree = [('S',), [ftree]]
elif isinstance(ftree[0], str): # just one insert
ftree = [('S',), [ftree]]
return postproc_nbtree(ftree, 0)
# gets leaves in format [nt, neidx, l, r, skip, finalr]
def read_tree(tree):
if isinstance(tree, tuple):
ltree = list(tree)
ltree.append(0) # no skip
return [ltree]
# otherwise should be a list
root, left, right = tree
if isinstance(right, list) and right[0][0] == 'C':
assert root[0] in ['S', 'R', 'S0']
assert left[0] == 'X' and (root[0] in ['S', 'S0'] or left[1] == root[1])
# get left subtree, which should be a terminal
left = list(left)
left.append(0) # no skip by default
# get left and right descendants of right branch
clmoves, crmoves = read_tree(right)
# crmoves[0] (i.e., leftmost child of crmoves) should be an X/R
crleftmost = crmoves[0]
# neidx and l should agree
assert crleftmost[1] == right[0][1] and right[0][2] == crleftmost[2]
# check for replace; if so update left subtree of C
skip = crleftmost[2] - left[3] # if crleftmost.l > left.r it's a replace
if skip > 0: # make the first child of clmoves do the replace
clmoves[0][4] = skip
# finally update left subtree (a terminal) w/ finalr or to be skipped
if root[0] in ['S', 'S0']: # need finalr
assert left[0] == 'X' and left[1] == right[0][1]
assert crmoves[-1][0] == 'R' and crmoves[-1][1] == right[0][1]
# update initial insert
finalr = crmoves[-1][3] # final r from all the way down the tree
left.append(finalr)
else: # root is R, so make sure we skip it
left[0] = 'R' # so we know to skip
return [left] + clmoves + crmoves
elif root[0] == 'C':
leftmoves = read_tree(left)
rightmoves = read_tree(right)
return leftmoves, rightmoves # keep them separate
else:
leftmoves = read_tree(left)
rightmoves = read_tree(right)
return leftmoves + rightmoves
# gets goldish moves
# format is [action, neidx, l, r, curri, skip]
def get_moves(tree, leaves=None):
if leaves is None:
leaves = read_tree(tree)
moves = []
curri = 0
for leaf in leaves:
nt, neidx, l, r = leaf[0:4]
# skip is 0 by default
move = ["insert", neidx, l, r, curri, 0]
if leaf[4] > 0: # a replace
move[0] = "replace"
move[5] = leaf[4]
# increment curri
curri += (r - l)
if len(leaf) > 5: # fix up r
move[3] = leaf[5]
if nt != 'R':
moves.append(move)
return moves
def reconstruct(moves, neighbs):
canvas = []
for move in moves:
neidx, l, r, ii, skip = move[1:]
canvas = canvas[:ii] + neighbs[neidx][l:r] + canvas[ii+skip:]
return canvas
def greedy_tag(x, neighbs):
cdef int i, j, k, N, M
cdef int l, r, m
N = len(x)
cdef list sames
cdef list news
cdef list moves = []
subs = make_database(neighbs)
#print("made db")
cdef set used = set()
i = 0
while i < N:
#print("oy", i)
for j in range(N, i, -1):
#print("ey", j)
key = tuple(x[i:j])
if key in subs: # break ties by whether we've used this neighbor before
sames = []
news = []
M = len(subs[key])
for k in range(M):
if subs[key][k][0] in used:
sames.append(k)
else:
news.append(k)
if len(sames) > 0:
ridx = np.random.randint(len(sames))
m, l, r = subs[key][sames[ridx]]
else:
ridx = np.random.randint(len(news))
m, l, r = subs[key][news[ridx]]
used.add(m)
moves.append(["insert", m, l, r, i, 0])
i += (r - l)
break
return moves