-
Notifications
You must be signed in to change notification settings - Fork 1
/
convert.py
85 lines (73 loc) · 3.32 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) 2018, deepakn94, codyaustun, robieta. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# -----------------------------------------------------------------------
#
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
import pandas as pd
from load import implicit_load
import torch
MIN_RATINGS = 20
USER_COLUMN = 'user_id'
ITEM_COLUMN = 'item_id'
def parse_args():
parser = ArgumentParser()
parser.add_argument('--path', type=str, default='/data/ml-20m/ratings.csv',
help='Path to reviews CSV file from MovieLens')
parser.add_argument('--output', type=str, default='/data',
help='Output directory for train and test files')
return parser.parse_args()
def main():
args = parse_args()
print("Loading raw data from {}".format(args.path))
df = implicit_load(args.path, sort=False)
print("Filtering out users with less than {} ratings".format(MIN_RATINGS))
grouped = df.groupby(USER_COLUMN)
df = grouped.filter(lambda x: len(x) >= MIN_RATINGS)
print("Mapping original user and item IDs to new sequential IDs")
df[USER_COLUMN] = pd.factorize(df[USER_COLUMN])[0]
df[ITEM_COLUMN] = pd.factorize(df[ITEM_COLUMN])[0]
print("Creating list of items for each user")
# Need to sort before popping to get last item
df.sort_values(by='timestamp', inplace=True)
# clean up data
del df['rating'], df['timestamp']
df = df.drop_duplicates() # assuming it keeps order
# now we have filtered and sorted by time data, we can split test data out
grouped_sorted = df.groupby(USER_COLUMN, group_keys=False)
test_data = grouped_sorted.tail(1).sort_values(by='user_id')
# need to pop for each group
train_data = grouped_sorted.apply(lambda x: x.iloc[:-1])
# Note: no way to keep reference training data ordering because use of python set and multi-process
# It should not matter since it will be later randomized again
# save train and val data that is fixed.
train_ratings = torch.from_numpy(train_data.values)
torch.save(train_ratings, args.output+'/train_ratings.pt')
test_ratings = torch.from_numpy(test_data.values)
torch.save(test_ratings, args.output+'/test_ratings.pt')
if __name__ == '__main__':
main()