forked from neurodebian/spm8
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spm_Icdf.m
115 lines (105 loc) · 3.99 KB
/
spm_Icdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
function F = spm_Icdf(x,n,p)
% Cumulative Distribution Function (CDF) of Binomial Bin(n,p) distribution
% FORMAT F = spm_Icdf(x,n,p)
%
% x - ordinate
% n - Binomial n
% p - Binomial p [Defaults to 0.5]
% F - CDF
%_______________________________________________________________________
%
% spm_Icdf returns the Cumulative Distribution Function for the
% Binomial family of distributions.
%
% Definition:
%-----------------------------------------------------------------------
% The Bin(n,p) distribution is the distribution of the number of
% successes from n identical independent Bernoulli trials each with
% success probability p. If random variable X is the number of
% successes from such a set of Bernoulli trials, then the CDF F(x) is
% Pr{X<=x}, the probability of x or less sucesses.
%
% The Binomial CDF is defined for whole n (i.e. non-negative integer n)
% and p in [0,1], given by: (See Evans et al., Ch6)
%
% { 0 for x<0
% | _ floor(x)
% F(x) = | > nCi * p^i * (1-p)^(n-i) for 0<=x<=n
% | - i=0
% { 1 for x>n
%
% where nCx is the Binomial coefficient "n-choose-x", given by n!/(x!(n-x)!)
%
% Normal approximation:
%-----------------------------------------------------------------------
% For (npq>5 & 0.1<=p<=0.9) | min(np,nq)>10 | npq>25 the Normal
% approximation to the Binomial may be used:
% X~Bin(n,p), X~:~N(np,npq) ( ~:~ -> approx. distributed as)
% where q=1-p. With continuity correction this gives:
% F(x) \approx \Phi((x+0.5-n*p)/sqrt(n*p*q))
% for Phi the standard normal CDF, related to the error function by
% \Phi(x) = 0.5+0.5*erf(x/sqrt(2))
%
% Algorithm:
%-----------------------------------------------------------------------
% F(x), the CDF of the Binomial distribution, for X~Bin(n,p), is related
% to the incomplete beta function, by:
%
% F(x) = 1 - betainc(p,x+1,n-x) (0<=x<n)
%
% See Abramowitz & Stegun, 26.5.24; and Press et al., Sec6.1 for
% further details.
%
% References:
%-----------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%
%_______________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Andrew Holmes
% $Id: spm_Icdf.m 1143 2008-02-07 19:33:33Z spm $
%-Format arguments, note & check sizes
%-----------------------------------------------------------------------
if nargin<3, p=0.5; end
if nargin<2, error('Insufficient arguments'), end
ad = [ndims(x);ndims(n);ndims(p)];
rd = max(ad);
as = [ [size(x),ones(1,rd-ad(1))];...
[size(n),ones(1,rd-ad(2))];...
[size(p),ones(1,rd-ad(3))] ];
rs = max(as);
xa = prod(as,2)>1;
if sum(xa)>1 & any(any(diff(as(xa,:)),1))
error('non-scalar args must match in size'), end
%-Computation
%-----------------------------------------------------------------------
%-Initialise result to zeros
F = zeros(rs);
%-Only defined for whole n, and for p in [0,1]. Return NaN if undefined.
md = ( ones(size(x)) & n==floor(n) & n>=0 & p>=0 & p<=1 );
if any(~md(:)), F(~md) = NaN;
warning('Returning NaN for out of range arguments'), end
%-F is 1 where x>=n, or (p=0 & x>=0) (where betainc involves log of zero)
m1 = ( x>=n | (p==0 & x>=0) );
F(md&m1) = 1;
%-Non-zero only where defined & x>=0 & ~(p==1 & x<n)
% (Leave those already set to 1)
Q = find( md & ~m1 & x>=0 & ~(p==1 & x<n) );
if isempty(Q), return, end
if xa(1), Qx=Q; else Qx=1; end
if xa(2), Qn=Q; else Qn=1; end
if xa(3), Qp=Q; else Qp=1; end
%-F(x) is a step function with steps at {0,1,...,n}, so floor(x)
fxQx = floor(x(Qx));
%-Compute
F(Q) = 1 - betainc(p(Qp),fxQx+1,n(Qn)-fxQx);