-
Notifications
You must be signed in to change notification settings - Fork 305
/
Copy pathassistant.py
171 lines (129 loc) · 4.78 KB
/
assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import base64
from threading import Lock, Thread
import cv2
import openai
from cv2 import VideoCapture, imencode
from dotenv import load_dotenv
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema.messages import SystemMessage
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI
from pyaudio import PyAudio, paInt16
from speech_recognition import Microphone, Recognizer, UnknownValueError
load_dotenv()
class WebcamStream:
def __init__(self):
self.stream = VideoCapture(index=0)
_, self.frame = self.stream.read()
self.running = False
self.lock = Lock()
def start(self):
if self.running:
return self
self.running = True
self.thread = Thread(target=self.update, args=())
self.thread.start()
return self
def update(self):
while self.running:
_, frame = self.stream.read()
self.lock.acquire()
self.frame = frame
self.lock.release()
def read(self, encode=False):
self.lock.acquire()
frame = self.frame.copy()
self.lock.release()
if encode:
_, buffer = imencode(".jpeg", frame)
return base64.b64encode(buffer)
return frame
def stop(self):
self.running = False
if self.thread.is_alive():
self.thread.join()
def __exit__(self, exc_type, exc_value, exc_traceback):
self.stream.release()
class Assistant:
def __init__(self, model):
self.chain = self._create_inference_chain(model)
def answer(self, prompt, image):
if not prompt:
return
print("Prompt:", prompt)
response = self.chain.invoke(
{"prompt": prompt, "image_base64": image.decode()},
config={"configurable": {"session_id": "unused"}},
).strip()
print("Response:", response)
if response:
self._tts(response)
def _tts(self, response):
player = PyAudio().open(format=paInt16, channels=1, rate=24000, output=True)
with openai.audio.speech.with_streaming_response.create(
model="tts-1",
voice="alloy",
response_format="pcm",
input=response,
) as stream:
for chunk in stream.iter_bytes(chunk_size=1024):
player.write(chunk)
def _create_inference_chain(self, model):
SYSTEM_PROMPT = """
You are a witty assistant that will use the chat history and the image
provided by the user to answer its questions. Your job is to answer
questions.
Use few words on your answers. Go straight to the point. Do not use any
emoticons or emojis.
Be friendly and helpful. Show some personality.
"""
prompt_template = ChatPromptTemplate.from_messages(
[
SystemMessage(content=SYSTEM_PROMPT),
MessagesPlaceholder(variable_name="chat_history"),
(
"human",
[
{"type": "text", "text": "{prompt}"},
{
"type": "image_url",
"image_url": "data:image/jpeg;base64,{image_base64}",
},
],
),
]
)
chain = prompt_template | model | StrOutputParser()
chat_message_history = ChatMessageHistory()
return RunnableWithMessageHistory(
chain,
lambda _: chat_message_history,
input_messages_key="prompt",
history_messages_key="chat_history",
)
webcam_stream = WebcamStream().start()
# model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")
# You can use OpenAI's GPT-4o model instead of Gemini Flash
# by uncommenting the following line:
model = ChatOpenAI(model="gpt-4o")
assistant = Assistant(model)
def audio_callback(recognizer, audio):
try:
prompt = recognizer.recognize_whisper(audio, model="base", language="english")
assistant.answer(prompt, webcam_stream.read(encode=True))
except UnknownValueError:
print("There was an error processing the audio.")
recognizer = Recognizer()
microphone = Microphone()
with microphone as source:
recognizer.adjust_for_ambient_noise(source)
stop_listening = recognizer.listen_in_background(microphone, audio_callback)
while True:
cv2.imshow("webcam", webcam_stream.read())
if cv2.waitKey(1) in [27, ord("q")]:
break
webcam_stream.stop()
cv2.destroyAllWindows()
stop_listening(wait_for_stop=False)