-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathloss.py
82 lines (63 loc) · 2.21 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from torch import nn
import torch.nn.functional as F
import torch
def _iou(pred, target):
b = pred.shape[0]
IoU = 0.0
for i in range(0,b):
#compute the IoU of the foreground
Iand1 = torch.sum(target[i,:,:]*pred[i,:,:])
Ior1 = torch.sum(target[i,:,:]) + torch.sum(pred[i,:,:])-Iand1
IoU1 = Iand1/Ior1
#IoU loss is (1-IoU1)
IoU = IoU + (1-IoU1)
return IoU/b
class IOU(torch.nn.Module):
def __init__(self):
super(IOU, self).__init__()
def forward(self, pred, target):
return _iou(pred, target)
class Weighed_Bce_Loss(nn.Module):
def __init__(self):
super(Weighed_Bce_Loss, self).__init__()
def forward(self, x, label):
x = x.view(-1, 1, x.shape[1], x.shape[2])
label = label.view(-1, 1, label.shape[1], label.shape[2])
label_t = (label == 1).float()
label_f = (label == 0).float()
p = torch.sum(label_t) / (torch.sum(label_t) + torch.sum(label_f))
w = torch.zeros_like(label)
w[label == 1] = p
w[label == 0] = 1 - p
loss = F.binary_cross_entropy(x, label, weight=w)
return loss
class Cls_Loss(nn.Module):
def __init__(self):
super(Cls_Loss, self).__init__()
def forward(self, x, label):
loss = F.binary_cross_entropy(x, label)
return loss
class S_Loss(nn.Module):
def __init__(self):
super(S_Loss, self).__init__()
def forward(self, x, label):
loss = F.smooth_l1_loss(x, label)
return loss
class Loss(nn.Module):
def __init__(self):
super(Loss, self).__init__()
self.loss_wbce = Weighed_Bce_Loss()
self.loss_cls = Cls_Loss()
self.loss_s = S_Loss()
self.loss_i = IOU()
self.w_wbce = 1
self.w_cls = 1
self.w_smooth = 1
self.w_iou = 1
def forward(self, x, label, x_cls, label_cls):
m_loss = self.loss_wbce(x, label) * self.w_wbce
c_loss = self.loss_cls(x_cls, label_cls) * self.w_cls
s_loss = self.loss_s(x, label) * self.w_smooth
iou_loss = self.loss_i(x, label) * self.w_iou
loss = m_loss + c_loss + s_loss + iou_loss
return loss, m_loss, c_loss, s_loss, iou_loss