diff --git a/changelog/1.doc.rst b/changelog/1.doc.rst new file mode 100644 index 00000000..b68e5f26 --- /dev/null +++ b/changelog/1.doc.rst @@ -0,0 +1 @@ +Added a tutorial (:ref:`sphx_glr_generated_gallery_rgb_composite.py`) demonstrates how to create an RGB image with three different maps. diff --git a/examples/rgb_composite.py b/examples/rgb_composite.py new file mode 100644 index 00000000..7337bb0f --- /dev/null +++ b/examples/rgb_composite.py @@ -0,0 +1,63 @@ +""" +============================= +Making an RGB composite image +============================= + +This example shows the process required to create an RGB composite image +of three AIA images at different wavelengths. To read more about the +algorithm used in this example, see this +`Astropy tutorial `__. +""" +import matplotlib.pyplot as plt +from matplotlib.lines import Line2D + +import sunpy.data.sample +from astropy.visualization import make_lupton_rgb +from sunpy.map import Map + +from sunkit_image.enhance import mgn + +############################################################################### +# We will use three AIA images from the sample data at the following +# wavelengths: 171, 193, and 211 Angstroms. The 171 image shows the quiet +# solar corona, 193 shows a hotter region of the corona, and 211 shows +# active magnetic regions in the corona. + +maps = Map(sunpy.data.sample.AIA_171_IMAGE, sunpy.data.sample.AIA_193_IMAGE, sunpy.data.sample.AIA_211_IMAGE) + +############################################################################### +# Before the images are assigned colors and combined, they need to be +# normalized so that features in each wavelength are visible in the combined +# image. We will apply multi-scale Gaussian normalization using +# `sunkit_image.enhance.mgn` to each map and then create the rgb composite. +# The ``k`` parameter is a scaling factor applied to the normalized image. A +# value of 5 produces sharper details in the transformed image. In the +# `~astropy.visualization.make_lupton_rgb` function, ``Q`` is a softening +# parameter which we set to 0 and ``stretch`` controls the linear stretch +# applied to the combined image. + +maps_mgn = [Map(mgn(m.data, k=5), m.meta) for m in maps] +im_rgb = make_lupton_rgb(maps_mgn[0].data, maps_mgn[1].data, maps_mgn[2].data, Q=0, stretch=1) + +############################################################################### +# The output of the `astropy.visualization.make_lupton_rgb` algorithm is not +# a Map, but instead an image. So, we need to create a WCS Axes using one of +# original maps and manually set the label. In the first step below, we grab +# the Set1 qualitative colormap to apply to the custom legend lines. + +cmap = plt.cm.Set1 +custom_lines = [ + Line2D([0], [0], color=cmap(0), lw=4), + Line2D([0], [0], color=cmap(2), lw=4), + Line2D([0], [0], color=cmap(1), lw=4), +] +fig = plt.figure() +ax = fig.add_subplot(111, projection=maps[0].wcs) +im = ax.imshow(im_rgb) +lon, lat = ax.coords +lon.set_axislabel("Helioprojective Longitude") +lat.set_axislabel("Helioprojective Latitude") +ax.legend(custom_lines, ["AIA 171", "AIA 193", "AIA 211"]) +ax.set_title("AIA RGB Composite") + +plt.show()