-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
47 lines (37 loc) · 1.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from PIL import Image
from pytorch_lightning import Trainer
from src.aocr import OCR, OCRDataModule
from src.utils import dataset, utils
def test(
test_path,
is_dataset = False,
enc_inp = None,
output_pred_path='output.txt',
checkpoint_path='models/aocr.pth'
):
ocr = OCR()
ocr.load_state_dict(torch.load(checkpoint_path))
ocr.eval()
if is_dataset:
dm = OCRDataModule(test_list=test_path)
t = Trainer()
t.test(ocr, dm)
else:
if enc_inp is None:
transformer = dataset.ResizeNormalize(img_width=ocr.img_width, img_height=ocr.img_height)
image = Image.open(test_path).convert('L')
image = transformer(image)
image = image.view(1, *image.size())
image = torch.autograd.Variable(image)
else:
image = enc_inp
decoder_outputs, attention_matrix = ocr(image, None, is_training=False, return_attentions=True)
words, prob = utils.get_converted_word(decoder_outputs, get_prob=True)
return words, prob, attention_matrix
if __name__ == "__main__":
w,_,_ = test(test_path=r"C:\Users\suman\PycharmProjects\seq2seq-attention-ocr-pytorch\data\predict-1-12\image.PNG")
di = utils.DigitIterator(w)
# with open("sample.txt", "w", encoding="utf-8") as f:
# f.write(di.get_str())
print(w,di.get_str())