forked from WangLibo1995/GeoSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loveda_test.py
138 lines (119 loc) · 4.98 KB
/
loveda_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import ttach as tta
import multiprocessing.pool as mpp
import multiprocessing as mp
import time
from train_supervision import *
import argparse
from pathlib import Path
import cv2
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
def label2rgb(mask):
h, w = mask.shape[0], mask.shape[1]
mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
mask_convert = mask[np.newaxis, :, :]
mask_rgb[np.all(mask_convert == 0, axis=0)] = [255, 255, 255]
mask_rgb[np.all(mask_convert == 1, axis=0)] = [255, 0, 0]
mask_rgb[np.all(mask_convert == 2, axis=0)] = [255, 255, 0]
mask_rgb[np.all(mask_convert == 3, axis=0)] = [0, 0, 255]
mask_rgb[np.all(mask_convert == 4, axis=0)] = [159, 129, 183]
mask_rgb[np.all(mask_convert == 5, axis=0)] = [0, 255, 0]
mask_rgb[np.all(mask_convert == 6, axis=0)] = [255, 195, 128]
return mask_rgb
def img_writer(inp):
(mask, mask_id, rgb) = inp
if rgb:
mask_name_tif = mask_id + '.png'
mask_tif = label2rgb(mask)
mask_tif = cv2.cvtColor(mask_tif, cv2.COLOR_RGB2BGR)
cv2.imwrite(mask_name_tif, mask_tif)
else:
mask_png = mask.astype(np.uint8)
mask_name_png = mask_id + '.png'
cv2.imwrite(mask_name_png, mask_png)
def get_args():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("-c", "--config_path", type=Path, required=True, help="Path to config")
arg("-o", "--output_path", type=Path, help="Path where to save resulting masks.", required=True)
arg("-t", "--tta", help="Test time augmentation.", default=None, choices=[None, "d4", "lr"]) ## lr is flip TTA, d4 is multi-scale TTA
arg("--rgb", help="whether output rgb masks", action='store_true')
arg("--val", help="whether eval validation set", action='store_true')
return parser.parse_args()
def main():
args = get_args()
config = py2cfg(args.config_path)
args.output_path.mkdir(exist_ok=True, parents=True)
model = Supervision_Train.load_from_checkpoint(os.path.join(config.weights_path, config.test_weights_name+'.ckpt'), config=config)
model.cuda(config.gpus[0])
model.eval()
if args.tta == "lr":
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.VerticalFlip()
]
)
model = tta.SegmentationTTAWrapper(model, transforms)
elif args.tta == "d4":
transforms = tta.Compose(
[
tta.HorizontalFlip(),
# tta.VerticalFlip(),
# tta.Rotate90(angles=[0, 90, 180, 270]),
tta.Scale(scales=[0.75, 1.0, 1.25, 1.5], interpolation='bicubic', align_corners=False),
# tta.Multiply(factors=[0.8, 1, 1.2])
]
)
model = tta.SegmentationTTAWrapper(model, transforms)
test_dataset = config.test_dataset
if args.val:
evaluator = Evaluator(num_class=config.num_classes)
evaluator.reset()
test_dataset = config.val_dataset
with torch.no_grad():
test_loader = DataLoader(
test_dataset,
batch_size=2,
num_workers=4,
pin_memory=True,
drop_last=False,
)
results = []
for input in tqdm(test_loader):
# raw_prediction NxCxHxW
raw_predictions = model(input['img'].cuda(config.gpus[0]))
image_ids = input["img_id"]
if args.val:
masks_true = input['gt_semantic_seg']
img_type = input['img_type']
raw_predictions = nn.Softmax(dim=1)(raw_predictions)
predictions = raw_predictions.argmax(dim=1)
for i in range(raw_predictions.shape[0]):
mask = predictions[i].cpu().numpy()
mask_name = image_ids[i]
mask_type = img_type[i]
if args.val:
if not os.path.exists(os.path.join(args.output_path, mask_type)):
os.mkdir(os.path.join(args.output_path, mask_type))
evaluator.add_batch(pre_image=mask, gt_image=masks_true[i].cpu().numpy())
results.append((mask, str(args.output_path / mask_type / mask_name), args.rgb))
else:
results.append((mask, str(args.output_path / mask_name), args.rgb))
if args.val:
iou_per_class = evaluator.Intersection_over_Union()
f1_per_class = evaluator.F1()
OA = evaluator.OA()
for class_name, class_iou, class_f1 in zip(config.classes, iou_per_class, f1_per_class):
print('F1_{}:{}, IOU_{}:{}'.format(class_name, class_f1, class_name, class_iou))
print('F1:{}, mIOU:{}, OA:{}'.format(np.nanmean(f1_per_class), np.nanmean(iou_per_class), OA))
t0 = time.time()
mpp.Pool(processes=mp.cpu_count()).map(img_writer, results)
t1 = time.time()
img_write_time = t1 - t0
print('images writing spends: {} s'.format(img_write_time))
if __name__ == "__main__":
main()