-
Notifications
You must be signed in to change notification settings - Fork 26
/
custom_layers.py
722 lines (621 loc) · 29.5 KB
/
custom_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# -*- coding: utf-8 -*-
import numpy as np
from keras import backend as K
from keras import activations, initializations, regularizers
from keras.engine import Layer, InputSpec
from keras.layers import Recurrent, time_distributed_dense
from keras.engine.topology import Layer
import theano
import theano.tensor as T
from fftconv import cufft, cuifft
import models
def augLeft(ReIm,module=K):
# return real-imaginary augmented matrix for left matrix multiplication
N=ReIm.shape[0]/2
Re=ReIm[:N]
Im=ReIm[N:]
return module.concatenate( \
[ module.concatenate([Re,-Im],axis=1), \
module.concatenate([Im, Re],axis=1)], axis=0)
def augRight(ReIm,module=K):
# return real-imaginary augmented matrix for right matrix multiplication
N=ReIm.shape[0]/2
Re=ReIm[:N]
Im=ReIm[N:]
return module.concatenate( \
[ module.concatenate([Re, Im],axis=1), \
module.concatenate([-Im,Re],axis=1)], axis=0)
def build_swap_re_im(N):
idx_re=np.arange(N)
return np.concatenate([N+idx_re,idx_re],axis=0)
def do_fft(input, n_hidden):
fft_input = K.reshape(input, (input.shape[0], 2, n_hidden))
fft_input = fft_input.dimshuffle(0,2,1)
fft_output = cufft(fft_input) / K.sqrt(n_hidden)
fft_output = fft_output.dimshuffle(0,2,1)
output = K.reshape(fft_output, (input.shape[0], 2*n_hidden))
return output
def do_ifft(input, n_hidden):
ifft_input = K.reshape(input, (input.shape[0], 2, n_hidden))
ifft_input = ifft_input.dimshuffle(0,2,1)
ifft_output = cuifft(ifft_input) / K.sqrt(n_hidden)
ifft_output = ifft_output.dimshuffle(0,2,1)
output = K.reshape(ifft_output, (input.shape[0], 2*n_hidden))
return output
def times_diag(input, n_hidden, diag, swap_re_im):
# input is a Ix2n_hidden matrix, where I is number
# of training examples
# diag is a n_hidden-dimensional real vector, which creates
# the 2n_hidden x 2n_hidden complex diagonal matrix using
# e.^{j.*diag}=cos(diag)+j.*sin(diag)
d = K.concatenate([diag, -diag]) #d is 2n_hidden
Re = K.cos(d).dimshuffle('x',0)
Im = K.sin(d).dimshuffle('x',0)
input_times_Re = input * Re
input_times_Im = input * Im
output = input_times_Re + input_times_Im[:, swap_re_im]
return output
def vec_permutation(input, index_permute):
return input[:, index_permute]
def Kouter(x1,x2):
y=K.dot(K.expand_dims(x1,dim=-1),K.expand_dims(x2,dim=0))
return y
def times_reflection(input, n_hidden, reflection):
input_re = input[:, :n_hidden]
input_im = input[:, n_hidden:]
reflect_re = reflection[:n_hidden]
reflect_im = reflection[n_hidden:]
vstarv = (reflection**2).sum()
input_re_reflect_re = K.dot(input_re, reflect_re)
input_re_reflect_im = K.dot(input_re, reflect_im)
input_im_reflect_re = K.dot(input_im, reflect_re)
input_im_reflect_im = K.dot(input_im, reflect_im)
a = Kouter(input_re_reflect_re - input_im_reflect_im, reflect_re)
b = Kouter(input_re_reflect_im + input_im_reflect_re, reflect_im)
c = Kouter(input_re_reflect_re - input_im_reflect_im, reflect_im)
d = Kouter(input_re_reflect_im + input_im_reflect_re, reflect_re)
output = input
output = T.inc_subtensor(output[:, :n_hidden], - 2. / vstarv * (a + b))
output = T.inc_subtensor(output[:, n_hidden:], - 2. / vstarv * (d - c))
return output
def times_unitary_ASB2016(xaug,N,Uparams):
theta=Uparams[0]
reflection=Uparams[1]
idxpermaug=Uparams[2]
swap_re_im=build_swap_re_im(N)
step1 = times_diag(xaug, N, theta[0,:], swap_re_im)
step2 = do_fft(step1, N)
step3 = times_reflection(step2, N, reflection[0,:])
step4 = vec_permutation(step3, idxpermaug)
step5 = times_diag(step4, N, theta[1,:], swap_re_im)
step6 = do_ifft(step5, N)
step7 = times_reflection(step6, N, reflection[1,:])
step8 = times_diag(step7, N, theta[2,:], swap_re_im)
yaug = step8
return yaug
def unitary_ASB2016_init(shape, name=None):
assert shape[0]==shape[1]
N=shape[1]
theta = initializations.uniform((3,N),scale=np.pi,name='{}_theta'.format(name))
reflection = initializations.glorot_uniform((2,2*N),name='{}_reflection'.format(name))
idxperm = np.random.permutation(N)
idxpermaug = np.concatenate((idxperm,N+idxperm))
Iaug=augLeft(np.concatenate((np.eye(N),np.zeros((N,N))),axis=0),module=np).astype(np.float32)
Uaug=times_unitary_ASB2016(Iaug,N,[theta,reflection,idxpermaug])
return Uaug,theta,reflection,idxpermaug
def unitary_svd_init(shape, name=None):
assert shape[0]==shape[1]
Re=initializations.normal(shape,scale=1.0,name=name).get_value()
Im=initializations.normal(shape,scale=1.0,name=name).get_value()
X = Re+1j*Im
[U,S,V]=np.linalg.svd(X)
X = np.dot(U,V)
ReX = np.real(X)
ImX = np.imag(X)
Xaug = np.concatenate([ReX,ImX],axis=0)
return K.variable(Xaug,name=name)
class uRNN(Recurrent):
'''Unitary RNN where the output is to be fed back to input, the
hidden state is complex-valued, and the recurrence matrix U
is unitary. Input transform is complex-valued.
# Arguments
output_dim: dimension of the complex-valued internal projections and the final output. Since hidden state of uRNN is complex-valued, self.output_dim will be equal to 2*output_dim. For a N-dimensional complex-valued hidden state, use output_dim=N.
init: weight initialization function.
Can be the name of an existing function (str),
or a Theano function (see: [initializations](../initializations.md)).
inner_init: initialization function of the inner cells.
Options:
'svd' : samples random complex-valued Gaussian matrix
and makes it unitary by taking SVD and setting
all singular values to 1.
Use with 'full' impl.s
'ASB2016': uses parameterization of
[Arjovsky,Shah,Bengio 2016].
Use with 'ASB2016' impl.
activation: activation function.
Only 'soft_thresh' supported for now
unitary_impl: implementation of unitary recurrence matrix
Options:
'ASB2016' : uses parameterization of [Arjovsky,Shah,Bengio 2016]
'full' : uses full unitary matrix without unitary constraint
during optimization
'full_natGrad': uses full unitary matrix with natural gradient step
(requires using <optimizer>_and_natGrad optimizer)
input_type: either 'real' or 'complex', useful when stacking uRNNs
W_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the input weights matrices.
U_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the recurrent weights matrices.
b_regularizer: instance of [WeightRegularizer](../regularizers.md),
applied to the bias.
dropout_W: float between 0 and 1. Fraction of the input units to drop for input gates.
dropout_U: float between 0 and 1. Fraction of the input units to drop for recurrent connections.
# References
- [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
- [Unitary Evolution Recurrent Networks]()
- [Full-Capacity Unitary Recurrent Neural Networks]()
'''
def __init__(self, output_dim,
init='glorot_uniform',
inner_init='svd',
activation='soft_thresh',
unitary_impl='full_natGrad',
input_type='real',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0.,
epsilon=1e-5,
h0_mean=0.0,
**kwargs):
idx_re = np.arange(output_dim)
self.swap_re_im = build_swap_re_im(output_dim)
self.output_dim = 2*output_dim #because the output will be complex-valued
self.N = output_dim
self.epsilon=epsilon
self.h0_mean=h0_mean
if (input_type=='real'):
# W maps from real-valued inputs to complex-valued outputs
self.init = initializations.get(init)
elif (input_type=='complex'):
# W maps from complex-valued inputs to complex-valued outputs
print "Need to implement complex-valued uRNN inputs"
raise NotImplementedError
else:
print "Input type of '%s' not supported" % input_type
raise NotImplementedError
if not ( (inner_init=='svd') or (inner_init=='ASB2016') ):
print "Unitary recurrence initialization '%s' not supported" % inner_init
raise NotImplementedError
self.inner_init=inner_init
if (activation=='soft_thresh'):
# soft-threshold is [x/abs(x)]*relu(abs(x)+b)
self.activation='soft_thresh'
else:
print "Activation '%s' not supported for unitary RNN" % activation
raise NotImplementedError
self.unitary_impl=unitary_impl
if (self.unitary_impl=='ASB2016'):
#always use ASB2016 init for ASB2016 impl
self.inner_init = 'ASB2016'
if (W_regularizer is not None) \
or (U_regularizer is not None) \
or (b_regularizer is not None) \
or (dropout_W > 0.) \
or (dropout_U > 0.):
#self.W_regularizer = regularizers.get(W_regularizer)
#self.U_regularizer = regularizers.get(U_regularizer)
#self.b_regularizer = regularizers.get(b_regularizer)
print "Regularizers and dropout not yet supported for unitary RNN"
raise NotImplementedError
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(uRNN, self).__init__(**kwargs)
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
if self.stateful:
self.reset_states()
else:
# initial states: all-zero tensor of shape (output_dim)
self.states = [None]
input_dim = input_shape[2]
self.input_dim = input_dim
self.W = self.init((input_dim, self.output_dim),
name='{}_W'.format(self.name))
#self.b = K.zeros((self.N,), name='{}_b'.format(self.name))
self.b = initializations.uniform((self.N,),scale=0.01,name='{}_b'.format(self.name))
self.baug=K.tile(self.b,[2])
h0 = self.h0_mean+initializations.uniform((2*self.N,),scale=0.01).get_value()
self.h0 = K.variable(h0,name='{}_h0'.format(self.name))
if ('full' in self.unitary_impl):
# we're using a full unitary recurrence matrix
if (self.inner_init=='svd'):
# use SVD to initialize U
self.U = unitary_svd_init((self.N, self.N),name='{}_U'.format(self.name))
elif (self.inner_init=='ASB2016'):
# use parameterization of [ASB2016] to initialize U
Uaug,_,_,_ = unitary_ASB2016_init((self.N,self.N))
Uaug=Uaug.eval()
self.U=K.variable(np.concatenate((Uaug[:self.N,:self.N],Uaug[:self.N,self.N:]),axis=0),name='{}_U'.format(self.name))
self.Uaug=augRight(self.U,module=K)
elif (self.unitary_impl=='ASB2016'):
# we're using the parameterization of [Arjovsky, Shah, Bengio 2016]
self.Uaug,self.theta,self.reflection,_ = unitary_ASB2016_init((self.N, self.N),name=self.name)
# set the trainable weights
if ('full' in self.unitary_impl):
self.trainable_weights = [self.W, self.U, self.b, self.h0]
elif (self.unitary_impl=='ASB2016'):
self.trainable_weights = [self.W, self.theta, self.reflection, self.b, self.h0]
self.regularizers = []
#if self.W_regularizer:
# self.W_regularizer.set_param(self.W)
# self.regularizers.append(self.W_regularizer)
#if self.U_regularizer:
# self.U_regularizer.set_param(self.U)
# self.regularizers.append(self.U_regularizer)
#if self.b_regularizer:
# self.b_regularizer.set_param(self.b)
# self.regularizers.append(self.b_regularizer)
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
def reset_states(self):
assert self.stateful, 'Layer must be stateful.'
input_shape = self.input_spec[0].shape
if not input_shape[0]:
raise Exception('If a RNN is stateful, a complete ' +
'input_shape must be provided (including batch size).')
if hasattr(self, 'states'):
K.set_value(self.states[0],
np.zeros((input_shape[0], self.output_dim)))
else:
self.states = [K.zeros((input_shape[0], self.output_dim))]
def preprocess_input(self, x):
if self.consume_less == 'cpu':
input_shape = self.input_spec[0].shape
input_dim = input_shape[2]
timesteps = input_shape[1]
return time_distributed_dense(x, self.W, None, self.dropout_W,
input_dim, self.output_dim,
timesteps)
else:
return x
# override Recurrent's get_initial_states function to load the trainable
# initial hidden state
def get_initial_states(self, x):
initial_state = K.expand_dims(self.h0,dim=0) # (1, output_dim)
initial_state = K.tile(initial_state, [x.shape[0], 1]) # (samples, output_dim)
#initial_states = [initial_state for _ in range(len(self.states))]
initial_states = [initial_state]
return initial_states
def step(self, x, states):
prev_output = states[0]
B_U = states[1]
B_W = states[2]
if self.consume_less == 'cpu':
h = x
else:
h = K.dot(x * B_W, self.W)
if (self.activation=='soft_thresh'):
preactivation = h + K.dot(prev_output * B_U, self.Uaug)
preactivation_abs = K.sqrt(self.epsilon + preactivation**2 + preactivation[:,self.swap_re_im]**2)
rescale = K.maximum(preactivation_abs+self.baug,0.)/(preactivation_abs + self.epsilon)
output = preactivation*rescale
else:
print "Activation",self.activation,"not implemented"
raise NotImplementedError
return output, [output]
def get_constants(self, x):
constants = []
if 0 < self.dropout_U < 1:
ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, self.output_dim))
B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
constants.append(B_U)
else:
constants.append(K.cast_to_floatx(1.))
if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
input_shape = self.input_spec[0].shape
input_dim = input_shape[-1]
ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, input_dim))
B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
constants.append(B_W)
else:
constants.append(K.cast_to_floatx(1.))
return constants
def get_config(self):
config = {'output_dim': self.output_dim,
'init': self.init.__name__,
'inner_init': self.inner_init.__name__,
'activation': self.activation.__name__,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'U_regularizer': self.U_regularizer.get_config() if self.U_regularizer else None,
'b_regularizer': self.b_regularizer.get_config() if self.b_regularizer else None,
'dropout_W': self.dropout_W,
'dropout_U': self.dropout_U}
base_config = super(uRNN, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class complex_RNN_wrapper(Layer):
'''Unitary RNN where the output is to be fed back to input, the
hidden state is complex-valued, and the recurrence matrix
is unitary. Input transform is complex-valued.
Wraps the Theano implementation of uRNN by
[Arjovsky,Shah,Bengio 2016], available from
https://github.com/amarshah/complex_RNN,
and further modified by Scott Wisdom ([email protected]).
unitary_impl: implementation of unitary recurrence matrix
Options:
'ASB2016' : uses parameterization of [Arjovsky,Shah,Bengio 2016]
'ASB2016_fast': faster version of 'ASB2016'
'full' : uses full unitary matrix without unitary constraint
during optimization
'full_natGrad': uses full unitary matrix with natural gradient step
(requires using <optimizer>_and_natGrad optimizer)
'full_natGradRMS': uses full unitary matrix with natural gradient step
and RMSprop-stype regularization of gradients
'''
def __init__(self, output_dim, hidden_dim=None, unitary_impl='adhoc', **kwargs):
self.output_dim = output_dim
if hidden_dim is None:
hidden_dim = output_dim
self.hidden_dim=hidden_dim
self.unitary_impl=unitary_impl
super(complex_RNN_wrapper, self).__init__(**kwargs)
def build(self, input_shape):
self.input_dim = input_shape[-1]
def call(self, x, mask=None):
input_dim = self.input_dim
input_type='real'
out_every_t=False
loss_function='MSE'
output_type='real'
flag_feed_forward=False
flag_use_mask=False
hidden_bias_mean=np.float32(0.0)
hidden_bias_init='zero'
Wimpl=self.unitary_impl
if ('full' in Wimpl):
Wimpl='full'
elif (Wimpl=='ASB2016'):
Wimpl='adhoc'
#hidden_bias_init='rand'
elif (Wimpl=='ASB2016_fast'):
Wimpl='adhoc_fast'
n_layers=1
seed=1234
x_spec=K.permute_dimensions(x,(1,0,2))
inputs, parameters, costs = models.complex_RNN(input_dim, self.hidden_dim, self.output_dim, input_type=input_type,out_every_t=out_every_t, loss_function=loss_function,output_type=output_type,flag_feed_forward=flag_feed_forward,flag_return_lin_output=True,x_spec=x_spec,flag_use_mask=flag_use_mask,hidden_bias_mean=hidden_bias_mean,Wimpl=Wimpl,flag_return_hidden_states=True,n_layers=n_layers,seed=seed,hidden_bias_init=hidden_bias_init)
lin_output=costs[2]
#self.hidden_states=costs[3]
if (self.unitary_impl=='full'):
# just use lrng for learning rate on this parameter
parameters[-1].name+='full_natGrad'
elif (self.unitary_impl=='full_natGrad'):
# use fixed lrng with natural gradient update
parameters[-1].name+='_natGrad_unitaryAug'
elif (self.unitary_impl=='full_natGradRMS'):
# use fixed lrng with natural gradient update and RMSprop-style gradient adjustment
parameters[-1].name+='_natGradRMS_unitaryAug'
elif (self.unitary_impl=='full_enforceComplex'):
# swap out 2Nx2N augmented unitary matrix for Nx2N, which ensures the
# complex number constraint is satisfied
parameters[-1].name+='full_natGrad'
Waug=parameters[-1]
WReIm=K.variable(value=Waug[:Waug.shape[1]/2,:].eval(),name=Waug.name)
WaugFull=K.concatenate( (WReIm, K.concatenate((-WReIm[:,WReIm.shape[1]/2:],WReIm[:,:WReIm.shape[1]/2]),axis=1)),axis=0 )
lin_output_new = theano.clone(lin_output,replace={parameters[-1]:WaugFull})
lin_output = lin_output_new
parameters[-1]=WReIm
self.trainable_weights = parameters
return lin_output
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.output_dim)
class DenseUnitaryAug(Layer):
'''A dense unitary ReIm augmented layer
```
# Arguments
output_dim: int > 0.
init: name of initialization function for the weights of the layer
(see [initializations](../initializations.md)),
or alternatively, Theano function to use for weights
initialization. This parameter is only relevant
if you don't pass a `weights` argument.
activation: name of activation function to use
(see [activations](../activations.md)),
or alternatively, elementwise Theano function.
If you don't specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).
weights: list of Numpy arrays to set as initial weights.
The list should have 2 elements, of shape `(input_dim, output_dim)`
and (output_dim,) for weights and biases respectively.
W_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the main weights matrix.
b_regularizer: instance of [WeightRegularizer](../regularizers.md),
applied to the bias.
activity_regularizer: instance of [ActivityRegularizer](../regularizers.md),
applied to the network output.
W_constraint: instance of the [constraints](../constraints.md) module
(eg. maxnorm, nonneg), applied to the main weights matrix.
b_constraint: instance of the [constraints](../constraints.md) module,
applied to the bias.
bias: whether to include a bias (i.e. make the layer affine rather than linear).
input_dim: dimensionality of the input (integer).
This argument (or alternatively, the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
# Input shape
2D tensor with shape: `(nb_samples, input_dim)`.
# Output shape
2D tensor with shape: `(nb_samples, output_dim)`.
'''
def __init__(self, output_dim, init='svd', activation='linear', weights=None,
input_type='complex',
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, input_dim=None, **kwargs):
if (init=='svd'):
self.init=unitary_svd_init
elif (init=='ASB2016'):
self.init=unitary_ASB2016_init
else:
print "Unitary recurrence initialization '%s' not supported" % inner_init
raise NotImplementedError
activation='linear'
self.activation = activations.get(activation)
self.output_dim = 2*output_dim
if input_dim is None:
input_dim=output_dim
if (input_type=='real'):
self.input_dim = input_dim
elif (input_type=='complex'):
self.input_dim = 2*input_dim
else:
print "Input type of '%s' not supported" % input_type
raise NotImplementedError
self.input_type = input_type
"""
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
"""
self.W_regularizer = None
self.b_regularizer = None
self.activity_regularizer = None
self.W_constraint = None
self.b_constraint = None
#self.bias = bias
self.bias = False
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=2)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(DenseUnitaryAug, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
self.input_spec = [InputSpec(dtype=K.floatx(),
shape=(None, input_dim))]
W = self.init((self.output_dim/2, self.output_dim/2))
W = W.get_value()
Waug = augRight(W,module=np)
self.Waug=K.variable(Waug,name='{}_Waug_full_natGrad_unitaryAug'.format(self.name))
self.WaugUse=self.Waug
if (self.input_type=='real'):
self.WaugUse = self.Waug[:self.output_dim/2,:]
"""
if self.bias:
self.b = K.zeros((self.output_dim,),
name='{}_b'.format(self.name))
self.trainable_weights = [self.W, self.b]
else:
"""
self.trainable_weights = [self.Waug]
self.regularizers = []
"""
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
if self.bias and self.b_regularizer:
self.b_regularizer.set_param(self.b)
self.regularizers.append(self.b_regularizer)
if self.activity_regularizer:
self.activity_regularizer.set_layer(self)
self.regularizers.append(self.activity_regularizer)
"""
self.constraints = {}
"""
if self.W_constraint:
self.constraints[self.W] = self.W_constraint
if self.bias and self.b_constraint:
self.constraints[self.b] = self.b_constraint
"""
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
def call(self, x, mask=None):
output = K.dot(x, self.WaugUse)
if self.bias:
output += self.b
return self.activation(output)
def get_output_shape_for(self, input_shape):
assert input_shape and len(input_shape) == 2
return (input_shape[0], self.output_dim)
def get_config(self):
config = {'output_dim': self.output_dim,
'init': self.init.__name__,
'activation': self.activation.__name__,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'b_regularizer': self.b_regularizer.get_config() if self.b_regularizer else None,
'activity_regularizer': self.activity_regularizer.get_config() if self.activity_regularizer else None,
'W_constraint': self.W_constraint.get_config() if self.W_constraint else None,
'b_constraint': self.b_constraint.get_config() if self.b_constraint else None,
'bias': self.bias,
'input_dim': self.input_dim}
base_config = super(DenseUnitaryAug, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class tanhAug(Layer):
'''tanh on magnitude of ReIm augmented complex vector, copy phase through
# Input shape
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
# Output shape
Same shape as the input.
# Arguments
theta: float >= 0. Threshold location of activation.
# References
'''
def __init__(self, flag_clip=False, **kwargs):
self.epsilon=1e-5
self.flag_clip = flag_clip
if self.flag_clip:
self.clip_min=0.0
self.clip_max=T.arctanh(np.float32(1-3e-8)).eval()
super(tanhAug, self).__init__(**kwargs)
def build(self, input_shape):
self.swap_re_im = build_swap_re_im(input_shape[1]/2)
def call(self, x, mask=None):
x_abs = K.sqrt(self.epsilon + x**2 + x[:,self.swap_re_im]**2)
if self.flag_clip:
x_abs = K.clip(x_abs,self.clip_min,self.clip_max)
rescale = K.tanh(x_abs)/(x_abs + self.epsilon)
return rescale * x
def get_output_shape_for(self, input_shape):
return input_shape
"""
def get_config(self):
config = {}
base_config = super(tanhAug, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
"""
class arctanhAug(Layer):
'''arctanh on magnitude of ReIm augmented complex vector, copy phase through
# Input shape
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
# Output shape
Same shape as the input.
# Arguments
theta: float >= 0. Threshold location of activation.
# References
'''
def __init__(self, **kwargs):
self.epsilon=1e-5
super(arctanhAug, self).__init__(**kwargs)
def build(self, input_shape):
self.swap_re_im = build_swap_re_im(input_shape[1]/2)
def call(self, x, mask=None):
x_abs = K.sqrt(self.epsilon + x**2 + x[:,self.swap_re_im]**2)
x_abs = K.clip(x_abs,0.,1-3e-8)
rescale = T.arctanh(x_abs)/(x_abs + self.epsilon)
return rescale * x
def get_output_shape_for(self, input_shape):
return input_shape
"""
def get_config(self):
config = {}
base_config = super(arctanhAug, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
"""