-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_test.py
117 lines (101 loc) · 6.71 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""General-purpose training script for image-to-image translation.
This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and
different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization).
You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model').
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' to resume your previous training.
Example:
Train a CycleGAN model:
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Train a pix2pix model:
python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/train_options.py for more training options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import logging
import os
import sys
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util import html
from util.visualizer import Visualizer
from util.util import make_dataframe, Metrics
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
opt_val = TrainOptions().parse() # create options for your validation dataset
# opt_val.dataroot = '/home/dataset/npy_test/npy_256'
opt_val.phase = 'test' # specify where your test images are saved
opt_val.preprocess = 'center' # you don't want data-augmentation in validation, unless you're using U-Net, then you might need to crop! If so, just remove this line.
# opt_val.crop_size = 128 # when model name == STGAN
opt_val.no_flip = True
opt_val.serial_batches = True # with this option, it's always the same test image that is saved during training, which helps with seeing the evolution of the performance
opt_val.batch_size = 1
dataval = create_dataset(opt_val) # create the validation dataset
print('The number of validation images = %d' % len(dataval))
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
# path of test metrics save to disk
frames_meta = make_dataframe(nbr_rows=len(dataval))
metric_dir = os.path.join(opt.results_dir, opt.name, 'metrics')
if not os.path.exists(metric_dir):
os.makedirs(metric_dir)
# define logging
logging.basicConfig(filename=opt.checkpoints_dir + '/' + opt.name + "/train_log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
for epoch in range(opt.epoch_count,
opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
model.update_learning_rate() # update learning rates in the beginning of every epoch.
model.train() # begin to train
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
# test for per train epoch
model.eval()
for i, testdata in enumerate(dataval):
model.set_input(testdata) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
Metrics(i, frames_meta, visuals, metric_dir)
# save metrics csvfile to disk
frames_meta_filename = os.path.join(metric_dir, "inference.csv")
frames_meta.to_csv(frames_meta_filename, sep=',')
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (
epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))