forked from wangzhecheng/DeepSolar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_data_list.py
91 lines (76 loc) · 2.66 KB
/
generate_data_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
""" Generate lists containing filepaths and labels for training, validation and evaluation. """
import pickle
import os.path
import random
import pandas as pd
##### generate training set #####
TRAIN_SET_DIR = 'SPI_train'
train_set_list = []
pos_num = 0
neg_num = 0
# negative samples
for i in xrange(1, 320378):
img_path = os.path.join(TRAIN_SET_DIR, '0', str(i)+'.png')
if not os.path.exists(img_path):
continue
train_set_list.append((img_path, [0]))
neg_num += 1
# positive samples
for i in xrange(1, 46091):
img_path = os.path.join(TRAIN_SET_DIR, '1', str(i)+'.png')
if not os.path.exists(img_path):
continue
train_set_list.append((img_path, [1]))
pos_num += 1
random.shuffle(train_set_list)
with open('train_set_list.pickle', 'w') as f:
pickle.dump(train_set_list, f)
print ('Train set list done. # positive samples: '+str(pos_num)+' # negative samples: '+str(neg_num))
##### generate validation set #####
VAL_SET_DIR = 'SPI_val'
val_set_list = []
pos_num = 0
neg_num = 0
# negative samples
for i in xrange(1, 227):
img_path = os.path.join(VAL_SET_DIR, '0', str(i)+'.png')
if not os.path.exists(img_path):
continue
val_set_list.append((img_path, [0]))
neg_num += 1
# positive samples
for i in xrange(1, 12761):
img_path = os.path.join(VAL_SET_DIR, '1', str(i)+'.png')
if not os.path.exists(img_path):
continue
val_set_list.append((img_path, [1]))
pos_num += 1
with open('val_set_list.pickle', 'w') as f:
pickle.dump(val_set_list, f)
print ('Validation set list done. # positive samples: '+str(pos_num)+' # negative samples: '+str(neg_num))
##### generate test set #####
TEST_SET_DIR = 'SPI_eval'
test_set_list = []
pos_num = 0
neg_num = 0
eval_set_meta = pd.read_csv(os.path.join(TEST_SET_DIR, 'eval_set_meta.csv')).values
for index in xrange(1, 66):
region_type = eval_set_meta[index-1, 5] # get the type of the regions
region_dir = os.path.join(TEST_SET_DIR, str(index))
# negative samples
for i in xrange(1, 3001):
img_path = os.path.join(region_dir, '0', str(i) + '.png')
if not os.path.exists(img_path):
continue
neg_num += 1
test_set_list.append((img_path, [0], index, i, region_type))
# positive samples
for i in xrange(1, 3001):
img_path = os.path.join(region_dir, '1', str(i) + '.png')
if not os.path.exists(img_path):
continue
pos_num += 1
test_set_list.append((img_path, [1], index, i, region_type))
with open('test_set_list.pickle', 'w') as f:
pickle.dump(test_set_list, f)
print ('Test set list done. # positive samples: '+str(pos_num)+' # negative samples: '+str(neg_num))