You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello.
I tried to run launch with ARM as a method instead of C2FARM.
python launch.py method=ARM rlbench.task=take_lid_off_saucepan rlbench.demo_path=/home/softgear/stepjam_ARM/my_save_dir framework.gpu=0
I met warnings and errors as following. How can I launch ARM ?
launch.py:332: UserWarning:
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
@hydra.main(config_name='config', config_path='conf')
/home/softgear/.local/lib/python3.8/site-packages/hydra/_internal/defaults_list.py:251: UserWarning: In 'config': Defaults list is missing `_self_`. See https://hydra.cc/docs/upgrades/1.0_to_1.1/default_composition_order for more information
warnings.warn(msg, UserWarning)
/home/softgear/.local/lib/python3.8/site-packages/hydra/core/default_element.py:124: UserWarning: In 'method/ARM': Usage of deprecated keyword in package header '# @package _group_'.
See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/changes_to_package_header for more information
deprecation_warning(
/home/softgear/.local/lib/python3.8/site-packages/hydra/_internal/hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default.
See https://hydra.cc/docs/next/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.
ret = run_job(
[2022-11-01 11:38:44,226][root][INFO] -
method:
name: ARM
activation: lrelu
q_conf: true
alpha: 0.05
alpha_lr: 0.0001
alpha_auto_tune: false
next_best_pose_critic_lr: 0.0025
next_best_pose_actor_lr: 0.001
next_best_pose_critic_weight_decay: 1.0e-05
next_best_pose_actor_weight_decay: 1.0e-05
crop_shape:
- 16
- 16
next_best_pose_tau: 0.005
next_best_pose_critic_grad_clip: 5
next_best_pose_actor_grad_clip: 5
qattention_grad_clip: 5
qattention_tau: 0.005
qattention_lr: 0.0005
qattention_weight_decay: 1.0e-05
qattention_lambda_qreg: 1.0e-07
demo_augmentation: true
demo_augmentation_every_n: 10
rlbench:
task: take_lid_off_saucepan
demos: 10
demo_path: /home/softgear/stepjam_ARM/my_save_dir
episode_length: 10
cameras:
- front
camera_resolution:
- 128
- 128
scene_bounds:
- -0.3
- -0.5
- 0.6
- 0.7
- 0.5
- 1.6
replay:
batch_size: 128
timesteps: 1
prioritisation: true
use_disk: false
path: /tmp/arm/replay
framework:
log_freq: 100
save_freq: 100
train_envs: 1
eval_envs: 1
replay_ratio: 128
transitions_before_train: 200
tensorboard_logging: true
csv_logging: true
training_iterations: 40000
gpu: 0
env_gpu: 0
logdir: /tmp/arm_test/
seeds: 1
[2022-11-01 11:38:44,254][root][INFO] - Using training device cuda:0.
[2022-11-01 11:38:44,254][root][INFO] - Using env device cuda:0.
[2022-11-01 11:38:44,264][root][INFO] - CWD:/tmp/arm_test/take_lid_off_saucepan/ARM
[2022-11-01 11:38:44,264][root][INFO] - Starting seed 0.
[2022-11-01 11:38:44,265][root][INFO] - Creating a PrioritizedReplayBuffer replay memory with the following parameters:
[2022-11-01 11:38:44,265][root][INFO] - timesteps: 1
[2022-11-01 11:38:44,265][root][INFO] - replay_capacity: 100000
[2022-11-01 11:38:44,265][root][INFO] - batch_size: 128
[2022-11-01 11:38:44,265][root][INFO] - update_horizon: 1
[2022-11-01 11:38:44,265][root][INFO] - gamma: 0.990000
[2022-11-01 11:38:44,265][root][INFO] - saving to RAM
[2022-11-01 11:38:44,269][root][INFO] - Filling replay with demos...
[2022-11-01 11:38:45,682][root][INFO] - Replay filled with demos.
[2022-11-01 11:38:46,631][root][INFO] - # Q-attention Params: 86386
/home/softgear/stepjam_ARM/ARM/arm/arm/next_best_pose_agent.py:148: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
action_min_max = torch.tensor(self._action_min_max).to(device)
[2022-11-01 11:38:46,656][root][INFO] - # NBP Critic Params: 1085572
[2022-11-01 11:38:46,656][root][INFO] - # NBP Actor Params: 51152
/home/softgear/stepjam_ARM/ARM/launch.py:332: UserWarning:
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
@hydra.main(config_name='config', config_path='conf')
/home/softgear/stepjam_ARM/ARM/launch.py:332: UserWarning:
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
@hydra.main(config_name='config', config_path='conf')
/home/softgear/stepjam_ARM/ARM/launch.py:332: UserWarning:
The version_base parameter is not specified.
Please specify a compatability version level, or None.
Will assume defaults for version 1.1
@hydra.main(config_name='config', config_path='conf')
/home/softgear/stepjam_ARM/ARM/arm/arm/qattention_agent.py:35: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
indices = torch.cat((m // t_shape[-1], m % t_shape[-1]), dim=1)
/home/softgear/stepjam_ARM/ARM/arm/arm/next_best_pose_agent.py:148: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
action_min_max = torch.tensor(self._action_min_max).to(device)
/home/softgear/stepjam_ARM/ARM/arm/arm/next_best_pose_agent.py:148: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
action_min_max = torch.tensor(self._action_min_max).to(device)
/home/softgear/stepjam_ARM/ARM/arm/arm/qattention_agent.py:35: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
indices = torch.cat((m // t_shape[-1], m % t_shape[-1]), dim=1)
/home/softgear/stepjam_ARM/ARM/arm/arm/qattention_agent.py:35: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
indices = torch.cat((m // t_shape[-1], m % t_shape[-1]), dim=1)
[CoppeliaSim:loadinfo] done.
Process train_env0:
Traceback (most recent call last):
File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/home/softgear/.local/lib/python3.8/site-packages/yarr/runners/_env_runner.py", line 169, in _run_env
raise e
File "/home/softgear/.local/lib/python3.8/site-packages/yarr/runners/_env_runner.py", line 143, in _run_env
for replay_transition in generator:
File "/home/softgear/.local/lib/python3.8/site-packages/yarr/utils/rollout_generator.py", line 30, in generator
agent_obs_elems = {k: np.array(v) for k, v in
File "/home/softgear/.local/lib/python3.8/site-packages/yarr/utils/rollout_generator.py", line 30, in <dictcomp>
agent_obs_elems = {k: np.array(v) for k, v in
File "/home/softgear/.local/lib/python3.8/site-packages/torch/_tensor.py", line 757, in __array__
return self.numpy()
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
[2022-11-01 11:38:55,800][root][WARNING] - Env train_env0 failed (1 times <= 10). restarting
[CoppeliaSim:loadinfo] done.
^C (SIGINT)
The text was updated successfully, but these errors were encountered:
@yananliusdu@softgearko Hi guys, I also encountered this problem. I found it is because some of the tensors are on CUDA while some are on CPU when you are running ARM method code. What you need to do is convert all the data in the rollout generator from CUDA to CPU.
Hello.
I tried to run launch with ARM as a method instead of C2FARM.
python launch.py method=ARM rlbench.task=take_lid_off_saucepan rlbench.demo_path=/home/softgear/stepjam_ARM/my_save_dir framework.gpu=0
I met warnings and errors as following. How can I launch ARM ?
The text was updated successfully, but these errors were encountered: