forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
578 lines (499 loc) · 22.1 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import distutils.command.clean
import distutils.spawn
import glob
import os
import shutil
import subprocess
import sys
import torch
from pkg_resources import parse_version, get_distribution, DistributionNotFound
from setuptools import setup, find_packages
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
def read(*names, **kwargs):
with open(os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8")) as fp:
return fp.read()
def get_dist(pkgname):
try:
return get_distribution(pkgname)
except DistributionNotFound:
return None
cwd = os.path.dirname(os.path.abspath(__file__))
version_txt = os.path.join(cwd, "version.txt")
with open(version_txt) as f:
version = f.readline().strip()
sha = "Unknown"
package_name = "torchvision"
try:
sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip()
except Exception:
pass
if os.getenv("BUILD_VERSION"):
version = os.getenv("BUILD_VERSION")
elif sha != "Unknown":
version += "+" + sha[:7]
def write_version_file():
version_path = os.path.join(cwd, "torchvision", "version.py")
with open(version_path, "w") as f:
f.write(f"__version__ = '{version}'\n")
f.write(f"git_version = {repr(sha)}\n")
f.write("from torchvision.extension import _check_cuda_version\n")
f.write("if _check_cuda_version() > 0:\n")
f.write(" cuda = _check_cuda_version()\n")
pytorch_dep = "torch"
if os.getenv("PYTORCH_VERSION"):
pytorch_dep += "==" + os.getenv("PYTORCH_VERSION")
requirements = [
"typing_extensions",
"numpy",
"requests",
pytorch_dep,
]
# Excluding 8.3.* because of https://github.com/pytorch/vision/issues/4934
pillow_ver = " >= 5.3.0, !=8.3.*"
pillow_req = "pillow-simd" if get_dist("pillow-simd") is not None else "pillow"
requirements.append(pillow_req + pillow_ver)
def find_library(name, vision_include):
this_dir = os.path.dirname(os.path.abspath(__file__))
build_prefix = os.environ.get("BUILD_PREFIX", None)
is_conda_build = build_prefix is not None
library_found = False
conda_installed = False
lib_folder = None
include_folder = None
library_header = f"{name}.h"
# Lookup in TORCHVISION_INCLUDE or in the package file
package_path = [os.path.join(this_dir, "torchvision")]
for folder in vision_include + package_path:
candidate_path = os.path.join(folder, library_header)
library_found = os.path.exists(candidate_path)
if library_found:
break
if not library_found:
print(f"Running build on conda-build: {is_conda_build}")
if is_conda_build:
# Add conda headers/libraries
if os.name == "nt":
build_prefix = os.path.join(build_prefix, "Library")
include_folder = os.path.join(build_prefix, "include")
lib_folder = os.path.join(build_prefix, "lib")
library_header_path = os.path.join(include_folder, library_header)
library_found = os.path.isfile(library_header_path)
conda_installed = library_found
else:
# Check if using Anaconda to produce wheels
conda = shutil.which("conda")
is_conda = conda is not None
print(f"Running build on conda: {is_conda}")
if is_conda:
python_executable = sys.executable
py_folder = os.path.dirname(python_executable)
if os.name == "nt":
env_path = os.path.join(py_folder, "Library")
else:
env_path = os.path.dirname(py_folder)
lib_folder = os.path.join(env_path, "lib")
include_folder = os.path.join(env_path, "include")
library_header_path = os.path.join(include_folder, library_header)
library_found = os.path.isfile(library_header_path)
conda_installed = library_found
if not library_found:
if sys.platform == "linux":
library_found = os.path.exists(f"/usr/include/{library_header}")
library_found = library_found or os.path.exists(f"/usr/local/include/{library_header}")
return library_found, conda_installed, include_folder, lib_folder
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "torchvision", "csrc")
main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) + glob.glob(
os.path.join(extensions_dir, "ops", "*.cpp")
)
source_cpu = (
glob.glob(os.path.join(extensions_dir, "ops", "autograd", "*.cpp"))
+ glob.glob(os.path.join(extensions_dir, "ops", "cpu", "*.cpp"))
+ glob.glob(os.path.join(extensions_dir, "ops", "quantized", "cpu", "*.cpp"))
)
print("Compiling extensions with following flags:")
compile_cpp_tests = os.getenv("WITH_CPP_MODELS_TEST", "0") == "1"
print(f" WITH_CPP_MODELS_TEST: {compile_cpp_tests}")
force_cuda = os.getenv("FORCE_CUDA", "0") == "1"
print(f" FORCE_CUDA: {force_cuda}")
debug_mode = os.getenv("DEBUG", "0") == "1"
print(f" DEBUG: {debug_mode}")
use_png = os.getenv("TORCHVISION_USE_PNG", "1") == "1"
print(f" TORCHVISION_USE_PNG: {use_png}")
use_jpeg = os.getenv("TORCHVISION_USE_JPEG", "1") == "1"
print(f" TORCHVISION_USE_JPEG: {use_jpeg}")
use_nvjpeg = os.getenv("TORCHVISION_USE_NVJPEG", "1") == "1"
print(f" TORCHVISION_USE_NVJPEG: {use_nvjpeg}")
use_ffmpeg = os.getenv("TORCHVISION_USE_FFMPEG", "1") == "1"
print(f" TORCHVISION_USE_FFMPEG: {use_ffmpeg}")
use_video_codec = os.getenv("TORCHVISION_USE_VIDEO_CODEC", "1") == "1"
print(f" TORCHVISION_USE_VIDEO_CODEC: {use_video_codec}")
nvcc_flags = os.getenv("NVCC_FLAGS", "")
print(f" NVCC_FLAGS: {nvcc_flags}")
is_rocm_pytorch = False
if torch.__version__ >= "1.5":
from torch.utils.cpp_extension import ROCM_HOME
is_rocm_pytorch = (torch.version.hip is not None) and (ROCM_HOME is not None)
if is_rocm_pytorch:
from torch.utils.hipify import hipify_python
hipify_python.hipify(
project_directory=this_dir,
output_directory=this_dir,
includes="torchvision/csrc/ops/cuda/*",
show_detailed=True,
is_pytorch_extension=True,
)
source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "hip", "*.hip"))
# Copy over additional files
for file in glob.glob(r"torchvision/csrc/ops/cuda/*.h"):
shutil.copy(file, "torchvision/csrc/ops/hip")
else:
source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "cuda", "*.cu"))
source_cuda += glob.glob(os.path.join(extensions_dir, "ops", "autocast", "*.cpp"))
sources = main_file + source_cpu
extension = CppExtension
if compile_cpp_tests:
print("Compiling CPP tests")
test_dir = os.path.join(this_dir, "test")
models_dir = os.path.join(this_dir, "torchvision", "csrc", "models")
test_file = glob.glob(os.path.join(test_dir, "*.cpp"))
source_models = glob.glob(os.path.join(models_dir, "*.cpp"))
test_file = [os.path.join(test_dir, s) for s in test_file]
source_models = [os.path.join(models_dir, s) for s in source_models]
tests = test_file + source_models
tests_include_dirs = [test_dir, models_dir]
define_macros = []
extra_compile_args = {"cxx": []}
if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) or force_cuda:
extension = CUDAExtension
sources += source_cuda
if not is_rocm_pytorch:
define_macros += [("WITH_CUDA", None)]
if nvcc_flags == "":
nvcc_flags = []
else:
nvcc_flags = nvcc_flags.split(" ")
else:
define_macros += [("WITH_HIP", None)]
nvcc_flags = []
extra_compile_args["nvcc"] = nvcc_flags
if sys.platform == "win32":
define_macros += [("torchvision_EXPORTS", None)]
define_macros += [("USE_PYTHON", None)]
extra_compile_args["cxx"].append("/MP")
if debug_mode:
print("Compiling in debug mode")
extra_compile_args["cxx"].append("-g")
extra_compile_args["cxx"].append("-O0")
if "nvcc" in extra_compile_args:
# we have to remove "-OX" and "-g" flag if exists and append
nvcc_flags = extra_compile_args["nvcc"]
extra_compile_args["nvcc"] = [f for f in nvcc_flags if not ("-O" in f or "-g" in f)]
extra_compile_args["nvcc"].append("-O0")
extra_compile_args["nvcc"].append("-g")
sources = [os.path.join(extensions_dir, s) for s in sources]
include_dirs = [extensions_dir]
ext_modules = [
extension(
"torchvision._C",
sorted(sources),
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
if compile_cpp_tests:
ext_modules.append(
extension(
"torchvision._C_tests",
tests,
include_dirs=tests_include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
)
# ------------------- Torchvision extra extensions ------------------------
vision_include = os.environ.get("TORCHVISION_INCLUDE", None)
vision_library = os.environ.get("TORCHVISION_LIBRARY", None)
vision_include = vision_include.split(os.pathsep) if vision_include is not None else []
vision_library = vision_library.split(os.pathsep) if vision_library is not None else []
include_dirs += vision_include
library_dirs = vision_library
# Image reading extension
image_macros = []
image_include = [extensions_dir]
image_library = []
image_link_flags = []
if sys.platform == "win32":
image_macros += [("USE_PYTHON", None)]
# Locating libPNG
libpng = shutil.which("libpng-config")
pngfix = shutil.which("pngfix")
png_found = libpng is not None or pngfix is not None
use_png = use_png and png_found
if use_png:
print("Found PNG library")
if libpng is not None:
# Linux / Mac
min_version = "1.6.0"
png_version = subprocess.run([libpng, "--version"], stdout=subprocess.PIPE)
png_version = png_version.stdout.strip().decode("utf-8")
png_version = parse_version(png_version)
if png_version >= parse_version(min_version):
print("Building torchvision with PNG image support")
png_lib = subprocess.run([libpng, "--libdir"], stdout=subprocess.PIPE)
png_lib = png_lib.stdout.strip().decode("utf-8")
if "disabled" not in png_lib:
image_library += [png_lib]
png_include = subprocess.run([libpng, "--I_opts"], stdout=subprocess.PIPE)
png_include = png_include.stdout.strip().decode("utf-8")
_, png_include = png_include.split("-I")
image_include += [png_include]
image_link_flags.append("png")
print(f" libpng version: {png_version}")
print(f" libpng include path: {png_include}")
else:
print("Could not add PNG image support to torchvision:")
print(f" libpng minimum version {min_version}, found {png_version}")
use_png = False
else:
# Windows
png_lib = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "lib")
png_include = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "include", "libpng16")
image_library += [png_lib]
image_include += [png_include]
image_link_flags.append("libpng")
else:
print("Building torchvision without PNG image support")
image_macros += [("PNG_FOUND", str(int(use_png)))]
# Locating libjpeg
(jpeg_found, jpeg_conda, jpeg_include, jpeg_lib) = find_library("jpeglib", vision_include)
use_jpeg = use_jpeg and jpeg_found
if use_jpeg:
print("Building torchvision with JPEG image support")
image_link_flags.append("jpeg")
if jpeg_conda:
image_library += [jpeg_lib]
image_include += [jpeg_include]
else:
print("Building torchvision without JPEG image support")
image_macros += [("JPEG_FOUND", str(int(use_jpeg)))]
# Locating nvjpeg
# Should be included in CUDA_HOME for CUDA >= 10.1, which is the minimum version we have in the CI
nvjpeg_found = (
extension is CUDAExtension
and CUDA_HOME is not None
and os.path.exists(os.path.join(CUDA_HOME, "include", "nvjpeg.h"))
)
use_nvjpeg = use_nvjpeg and nvjpeg_found
if use_nvjpeg:
print("Building torchvision with NVJPEG image support")
image_link_flags.append("nvjpeg")
else:
print("Building torchvision without NVJPEG image support")
image_macros += [("NVJPEG_FOUND", str(int(use_nvjpeg)))]
image_path = os.path.join(extensions_dir, "io", "image")
image_src = (
glob.glob(os.path.join(image_path, "*.cpp"))
+ glob.glob(os.path.join(image_path, "cpu", "*.cpp"))
+ glob.glob(os.path.join(image_path, "cuda", "*.cpp"))
)
if use_png or use_jpeg:
ext_modules.append(
extension(
"torchvision.image",
image_src,
include_dirs=image_include + include_dirs + [image_path],
library_dirs=image_library + library_dirs,
define_macros=image_macros,
libraries=image_link_flags,
extra_compile_args=extra_compile_args,
)
)
# Locating ffmpeg
ffmpeg_exe = shutil.which("ffmpeg")
has_ffmpeg = ffmpeg_exe is not None
ffmpeg_version = None
# FIXME: Building torchvision with ffmpeg on MacOS or with Python 3.9
# FIXME: causes crash. See the following GitHub issues for more details.
# FIXME: https://github.com/pytorch/pytorch/issues/65000
# FIXME: https://github.com/pytorch/vision/issues/3367
if sys.platform != "linux" or (sys.version_info.major == 3 and sys.version_info.minor == 9):
has_ffmpeg = False
if has_ffmpeg:
try:
# This is to check if ffmpeg is installed properly.
ffmpeg_version = subprocess.check_output(["ffmpeg", "-version"])
except subprocess.CalledProcessError:
print("Building torchvision without ffmpeg support")
print(" Error fetching ffmpeg version, ignoring ffmpeg.")
has_ffmpeg = False
use_ffmpeg = use_ffmpeg and has_ffmpeg
if use_ffmpeg:
ffmpeg_libraries = {"libavcodec", "libavformat", "libavutil", "libswresample", "libswscale"}
ffmpeg_bin = os.path.dirname(ffmpeg_exe)
ffmpeg_root = os.path.dirname(ffmpeg_bin)
ffmpeg_include_dir = os.path.join(ffmpeg_root, "include")
ffmpeg_library_dir = os.path.join(ffmpeg_root, "lib")
gcc = os.environ.get("CC", shutil.which("gcc"))
platform_tag = subprocess.run([gcc, "-print-multiarch"], stdout=subprocess.PIPE)
platform_tag = platform_tag.stdout.strip().decode("utf-8")
if platform_tag:
# Most probably a Debian-based distribution
ffmpeg_include_dir = [ffmpeg_include_dir, os.path.join(ffmpeg_include_dir, platform_tag)]
ffmpeg_library_dir = [ffmpeg_library_dir, os.path.join(ffmpeg_library_dir, platform_tag)]
else:
ffmpeg_include_dir = [ffmpeg_include_dir]
ffmpeg_library_dir = [ffmpeg_library_dir]
for library in ffmpeg_libraries:
library_found = False
for search_path in ffmpeg_include_dir + include_dirs:
full_path = os.path.join(search_path, library, "*.h")
library_found |= len(glob.glob(full_path)) > 0
if not library_found:
print("Building torchvision without ffmpeg support")
print(f" {library} header files were not found, disabling ffmpeg support")
use_ffmpeg = False
else:
print("Building torchvision without ffmpeg support")
if use_ffmpeg:
print("Building torchvision with ffmpeg support")
print(f" ffmpeg version: {ffmpeg_version}")
print(f" ffmpeg include path: {ffmpeg_include_dir}")
print(f" ffmpeg library_dir: {ffmpeg_library_dir}")
# TorchVision base decoder + video reader
video_reader_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video_reader")
video_reader_src = glob.glob(os.path.join(video_reader_src_dir, "*.cpp"))
base_decoder_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "decoder")
base_decoder_src = glob.glob(os.path.join(base_decoder_src_dir, "*.cpp"))
# Torchvision video API
videoapi_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video")
videoapi_src = glob.glob(os.path.join(videoapi_src_dir, "*.cpp"))
# exclude tests
base_decoder_src = [x for x in base_decoder_src if "_test.cpp" not in x]
combined_src = video_reader_src + base_decoder_src + videoapi_src
ext_modules.append(
CppExtension(
"torchvision.video_reader",
combined_src,
include_dirs=[
base_decoder_src_dir,
video_reader_src_dir,
videoapi_src_dir,
extensions_dir,
*ffmpeg_include_dir,
*include_dirs,
],
library_dirs=ffmpeg_library_dir + library_dirs,
libraries=[
"avcodec",
"avformat",
"avutil",
"swresample",
"swscale",
],
extra_compile_args=["-std=c++14"] if os.name != "nt" else ["/std:c++14", "/MP"],
extra_link_args=["-std=c++14" if os.name != "nt" else "/std:c++14"],
)
)
# Locating video codec
# CUDA_HOME should be set to the cuda root directory.
# TORCHVISION_INCLUDE and TORCHVISION_LIBRARY should include the location to
# video codec header files and libraries respectively.
video_codec_found = (
extension is CUDAExtension
and CUDA_HOME is not None
and any([os.path.exists(os.path.join(folder, "cuviddec.h")) for folder in vision_include])
and any([os.path.exists(os.path.join(folder, "nvcuvid.h")) for folder in vision_include])
and any([os.path.exists(os.path.join(folder, "libnvcuvid.so")) for folder in library_dirs])
)
use_video_codec = use_video_codec and video_codec_found
if (
use_video_codec
and use_ffmpeg
and any([os.path.exists(os.path.join(folder, "libavcodec", "bsf.h")) for folder in ffmpeg_include_dir])
):
print("Building torchvision with video codec support")
gpu_decoder_path = os.path.join(extensions_dir, "io", "decoder", "gpu")
gpu_decoder_src = glob.glob(os.path.join(gpu_decoder_path, "*.cpp"))
cuda_libs = os.path.join(CUDA_HOME, "lib64")
cuda_inc = os.path.join(CUDA_HOME, "include")
ext_modules.append(
extension(
"torchvision.Decoder",
gpu_decoder_src,
include_dirs=include_dirs + [gpu_decoder_path] + [cuda_inc] + ffmpeg_include_dir,
library_dirs=ffmpeg_library_dir + library_dirs + [cuda_libs],
libraries=[
"avcodec",
"avformat",
"avutil",
"swresample",
"swscale",
"nvcuvid",
"cuda",
"cudart",
"z",
"pthread",
"dl",
"nppicc",
],
extra_compile_args=extra_compile_args,
)
)
else:
print("Building torchvision without video codec support")
if (
use_video_codec
and use_ffmpeg
and not any([os.path.exists(os.path.join(folder, "libavcodec", "bsf.h")) for folder in ffmpeg_include_dir])
):
print(
" The installed version of ffmpeg is missing the header file 'bsf.h' which is "
" required for GPU video decoding. Please install the latest ffmpeg from conda-forge channel:"
" `conda install -c conda-forge ffmpeg`."
)
return ext_modules
class clean(distutils.command.clean.clean):
def run(self):
with open(".gitignore") as f:
ignores = f.read()
for wildcard in filter(None, ignores.split("\n")):
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
# It's an old-style class in Python 2.7...
distutils.command.clean.clean.run(self)
if __name__ == "__main__":
print(f"Building wheel {package_name}-{version}")
write_version_file()
with open("README.rst") as f:
readme = f.read()
setup(
# Metadata
name=package_name,
version=version,
author="PyTorch Core Team",
author_email="[email protected]",
url="https://github.com/pytorch/vision",
description="image and video datasets and models for torch deep learning",
long_description=readme,
license="BSD",
# Package info
packages=find_packages(exclude=("test",)),
package_data={package_name: ["*.dll", "*.dylib", "*.so", "prototype/datasets/_builtin/*.categories"]},
zip_safe=False,
install_requires=requirements,
extras_require={
"scipy": ["scipy"],
},
ext_modules=get_extensions(),
python_requires=">=3.7",
cmdclass={
"build_ext": BuildExtension.with_options(no_python_abi_suffix=True),
"clean": clean,
},
)