-
Notifications
You must be signed in to change notification settings - Fork 2
/
inference_huge_image.py
247 lines (210 loc) · 9.45 KB
/
inference_huge_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import argparse
from pathlib import Path
import glob
from PIL import Image
import ttach as tta
import cv2
import numpy as np
import torch
import albumentations as albu
from catalyst.dl import SupervisedRunner
from skimage.morphology import remove_small_holes, remove_small_objects
from tools.cfg import py2cfg
from torch import nn
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from train_supervision import *
import random
import os
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def building_to_rgb(mask):
h, w = mask.shape[0], mask.shape[1]
mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
mask_convert = mask[np.newaxis, :, :]
mask_rgb[np.all(mask_convert == 0, axis=0)] = [255, 255, 255]
mask_rgb[np.all(mask_convert == 1, axis=0)] = [0, 0, 0]
return mask_rgb
def pv2rgb(mask): # Potsdam and vaihingen
h, w = mask.shape[0], mask.shape[1]
mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
mask_convert = mask[np.newaxis, :, :]
mask_rgb[np.all(mask_convert == 3, axis=0)] = [0, 255, 0]
mask_rgb[np.all(mask_convert == 0, axis=0)] = [255, 255, 255]
mask_rgb[np.all(mask_convert == 1, axis=0)] = [255, 0, 0]
mask_rgb[np.all(mask_convert == 2, axis=0)] = [255, 255, 0]
mask_rgb[np.all(mask_convert == 4, axis=0)] = [0, 204, 255]
mask_rgb[np.all(mask_convert == 5, axis=0)] = [0, 0, 255]
return mask_rgb
def landcoverai_to_rgb(mask):
w, h = mask.shape[0], mask.shape[1]
mask_rgb = np.zeros(shape=(w, h, 3), dtype=np.uint8)
mask_convert = mask[np.newaxis, :, :]
mask_rgb[np.all(mask_convert == 3, axis=0)] = [255, 255, 255]
mask_rgb[np.all(mask_convert == 0, axis=0)] = [233, 193, 133]
mask_rgb[np.all(mask_convert == 1, axis=0)] = [255, 0, 0]
mask_rgb[np.all(mask_convert == 2, axis=0)] = [0, 255, 0]
mask_rgb = cv2.cvtColor(mask_rgb, cv2.COLOR_RGB2BGR)
return mask_rgb
def uavid2rgb(mask):
h, w = mask.shape[0], mask.shape[1]
mask_rgb = np.zeros(shape=(h, w, 3), dtype=np.uint8)
mask_convert = mask[np.newaxis, :, :]
mask_rgb[np.all(mask_convert == 0, axis=0)] = [128, 0, 0]
mask_rgb[np.all(mask_convert == 1, axis=0)] = [128, 64, 128]
mask_rgb[np.all(mask_convert == 2, axis=0)] = [0, 128, 0]
mask_rgb[np.all(mask_convert == 3, axis=0)] = [128, 128, 0]
mask_rgb[np.all(mask_convert == 4, axis=0)] = [64, 0, 128]
mask_rgb[np.all(mask_convert == 5, axis=0)] = [192, 0, 192]
mask_rgb[np.all(mask_convert == 6, axis=0)] = [64, 64, 0]
mask_rgb[np.all(mask_convert == 7, axis=0)] = [0, 0, 0]
mask_rgb = cv2.cvtColor(mask_rgb, cv2.COLOR_RGB2BGR)
return mask_rgb
def get_args():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("-i", "--image_path", type=Path, required=True, help="Path to huge image folder")
arg("-c", "--config_path", type=Path, required=True, help="Path to config")
arg("-o", "--output_path", type=Path, help="Path to save resulting masks.", required=True)
arg("-t", "--tta", help="Test time augmentation.", default=None, choices=[None, "d4", "lr"])
arg("-ph", "--patch-height", help="height of patch size", type=int, default=512)
arg("-pw", "--patch-width", help="width of patch size", type=int, default=512)
arg("-b", "--batch-size", help="batch size", type=int, default=2)
arg("-d", "--dataset", help="dataset", default="pv", choices=["pv", "landcoverai", "uavid", "building"])
return parser.parse_args()
def get_img_padded(image, patch_size):
oh, ow = image.shape[0], image.shape[1]
rh, rw = oh % patch_size[0], ow % patch_size[1]
width_pad = 0 if rw == 0 else patch_size[1] - rw
height_pad = 0 if rh == 0 else patch_size[0] - rh
# print(oh, ow, rh, rw, height_pad, width_pad)
h, w = oh + height_pad, ow + width_pad
pad = albu.PadIfNeeded(min_height=h, min_width=w, position='bottom_right',
border_mode=0, value=[0, 0, 0])(image=image)
img_pad = pad['image']
return img_pad, height_pad, width_pad
class InferenceDataset(Dataset):
def __init__(self, tile_list=None, transform=albu.Normalize()):
self.tile_list = tile_list
self.transform = transform
def __getitem__(self, index):
img = self.tile_list[index]
img_id = index
aug = self.transform(image=img)
img = aug['image']
img = torch.from_numpy(img).permute(2, 0, 1).float()
results = dict(img_id=img_id, img=img)
return results
def __len__(self):
return len(self.tile_list)
def make_dataset_for_one_huge_image(img_path, patch_size):
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
tile_list = []
image_pad, height_pad, width_pad = get_img_padded(img.copy(), patch_size)
output_height, output_width = image_pad.shape[0], image_pad.shape[1]
for x in range(0, output_height, patch_size[0]):
for y in range(0, output_width, patch_size[1]):
image_tile = image_pad[x:x+patch_size[0], y:y+patch_size[1]]
tile_list.append(image_tile)
dataset = InferenceDataset(tile_list=tile_list)
return dataset, width_pad, height_pad, output_width, output_height, image_pad, img.shape
def main():
args = get_args()
seed_everything(42)
patch_size = (args.patch_height, args.patch_width)
config = py2cfg(args.config_path)
model = Supervision_Train.load_from_checkpoint(os.path.join(config.weights_path, config.test_weights_name+'.ckpt'), config=config)
model.cuda(config.gpus[0])
model.eval()
if args.tta == "lr":
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.VerticalFlip()
]
)
model = tta.SegmentationTTAWrapper(model, transforms)
elif args.tta == "d4":
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.VerticalFlip(),
# tta.Rotate90(angles=[0, 90, 180, 270]),
tta.Scale(scales=[0.75, 1, 1.25, 1.5, 1.75]),
# tta.Multiply(factors=[0.8, 1, 1.2])
]
)
model = tta.SegmentationTTAWrapper(model, transforms)
img_paths = []
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
for ext in ('*.tif', '*.png', '*.jpg'):
img_paths.extend(glob.glob(os.path.join(args.image_path, ext)))
img_paths.sort()
# print(img_paths)
for img_path in img_paths:
img_name = img_path.split('/')[-1]
# print('origin mask', original_mask.shape)
dataset, width_pad, height_pad, output_width, output_height, img_pad, img_shape = \
make_dataset_for_one_huge_image(img_path, patch_size)
# print('img_padded', img_pad.shape)
output_mask = np.zeros(shape=(output_height, output_width), dtype=np.uint8)
output_tiles = []
k = 0
with torch.no_grad():
dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size,
drop_last=False, shuffle=False)
for input in tqdm(dataloader):
# raw_prediction NxCxHxW
raw_predictions = model(input['img'].cuda(config.gpus[0]))
# print('raw_pred shape:', raw_predictions.shape)
raw_predictions = nn.Softmax(dim=1)(raw_predictions)
# input_images['features'] NxCxHxW C=3
predictions = raw_predictions.argmax(dim=1)
image_ids = input['img_id']
# print('prediction', predictions.shape)
# print(np.unique(predictions))
for i in range(predictions.shape[0]):
mask = predictions[i].cpu().numpy()
output_tiles.append((mask, image_ids[i].cpu().numpy()))
for m in range(0, output_height, patch_size[0]):
for n in range(0, output_width, patch_size[1]):
output_mask[m:m + patch_size[0], n:n + patch_size[1]] = output_tiles[k][0]
# print(output_tiles[k][1])
k = k + 1
output_mask = output_mask[-img_shape[0]:, -img_shape[1]:]
# if height_pad != 0 and width_pad == 0:
# h_index = height_pad // 2
# output_mask = output_mask[h_index:-h_index, :]
# elif height_pad == 0 and width_pad != 0:
# w_index = width_pad // 2
# output_mask = output_mask[:, w_index:-w_index]
# elif height_pad != 0 and width_pad != 0:
# h_index = height_pad // 2
# w_index = width_pad // 2
# output_mask = output_mask[h_index:-h_index:, w_index:-w_index]
# else:
# output_mask = output_mask
# print('mask', output_mask.shape)
if args.dataset == 'landcoverai':
output_mask = landcoverai_to_rgb(output_mask)
elif args.dataset == 'pv':
output_mask = pv2rgb(output_mask)
elif args.dataset == 'uavid':
output_mask = uavid2rgb(output_mask)
elif args.dataset == 'building':
output_mask = building_to_rgb(output_mask)
else:
output_mask = output_mask
# print(img_shape, output_mask.shape)
# assert img_shape == output_mask.shape
cv2.imwrite(os.path.join(args.output_path, img_name), output_mask)
if __name__ == "__main__":
main()