-
Notifications
You must be signed in to change notification settings - Fork 2
/
em.Rmd
247 lines (185 loc) · 7.69 KB
/
em.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
title: "EM"
author: "Lieven Clement"
date: "statOmics, Ghent University (https://statomics.github.io)"
output:
html_document:
code_download: true
theme: cosmo
toc: true
toc_float: true
highlight: tango
number_sections: true
pdf_document:
toc: true
number_sections: true
---
```{r, child="_setup.Rmd"}
```
# Example of model based clustering with two groups
We will use a toy example to explain the EM algorithm for model based clustering.
- Two groups $k=1,2$
- Univariate observations are observed $x_i$ with $i= 1, \dots, n$
- The data of group j follows a normal distribution $N(u_j,1)$ with a variance $\sigma^2=1$ and a mean $\mu_j$ that depends on the group $j=1,2$.
The data follows the following mixture distribution:
\[f(x) = \pi_1 f_1(x) + (1-\pi_1) f_2(x)\]
With
- $\pi_1$ the probability that a random sample from the population belongs to group 1
- $f_1(x)$ the density of the data in group 1, i.e. $N(\mu_1,1)$
- $f_2(x)$ the density of the data in group 2, i.e. $N(\mu_2,1)$.
- Unknowns? Group membership $z_i$, the group means $\mu_j$ and the proportion of subjects in the population of group 1 $\pi_1$ are unknown.
We can estimate the model parameters $\boldsymbol{\theta} = [\mu_1,\mu_2,\pi_1]^T$ using maximum likelihood.
\[
L\left(\mu_1,\mu_2,\pi_1\vert \mathbf{X}\right) = \prod_{i=1}^n \left[\pi_1 f_1(x_i) + (1-\pi_1) f_2(x_i)
\right]\]
It is easier to maximise the log-likelihood:
\[
l\left(\mu_1,\mu_2,\pi_1\vert \mathbf{X}\right) = \sum_{i=1}^n \log\left[\pi_1 f_1(x_i) + (1-\pi_1) f_2(x_i)
\right]\]
The optimisation is difficult because we have to take the log of a sum and the likelihood does not factorise further.
# Simulate toy Data
```{r}
library(tidyverse)
mu1Real <- 2
mu2Real <- -1
pi1Real = .4
set.seed(114)
zReal <- rbinom(500, size = 1, prob = pi1Real)
x <- ifelse(zReal==1, rnorm(500,mean=mu1Real), rnorm(500, mean=mu2Real))
data.frame(x) %>%
ggplot(aes(x = x)) +
geom_histogram()
data.frame(x,zReal) %>%
ggplot(aes(zReal,x,color=zReal)) +
geom_point() +
scale_colour_gradient2(
low = "blue",
mid="white",
high="red",
midpoint = 0.5) +
geom_point(x=.95,y=mu1Real, shape=25, col="red", size=3) +
geom_point(x=0.05,y=mu2Real, shape=25, col="blue", size=3) +
ggtitle("Simulated data with real group means (triangles)")
```
# Parameter estimation
If we would know the cluster membership $z_{i1}$
\[z_{i1}=\left\{ \begin{matrix} 1 & \text{if } x_i \text{ belongs to group 1}\\
0 & \text{if } x_i \text{ belongs to group 2}
\end{matrix}\right.\]
with $z_{i1}$ follows a Bernoulli distribution
\[B(\pi_1)=\pi_1^{z_{i1}}(1-\pi_1)^{(1-z_{i1})} \]
Then the density of $x_i$ given $z_{i1}$ becomes
\[f(x_i\vert z_{i1}) = f_1(x_i)^{z_{i1}}f_2(x_i)^{1-z_{i1}}\]
and the joint distribution of $z_{i1}$ and $x_i$ then becomes
\begin{eqnarray}
f(x_i, z_{i1})&=&f(x_i\vert z_{i1}) f(z_{i1})\\
&=& f_1(x_i)^{z_{i1}}f_2(x_i)^{1-z_{i1}}\pi_1^{z_{i1}}(1-\pi_1)^{(1-z_{ik})}
\end{eqnarray}
and the log likelihood of the complete data becomes
\[
l\left(\mu_1,\mu_2,\pi_1\vert \mathbf{X, Z}\right) = \sum_{i=1}^n z_{i1} \log \left[\pi_1 f_1(x_i)\right] + (1-z_{i1})\log \left[(1-\pi_1) f_2(x_i)\right]
\]
- Note, that in the notation of the [Frayley and Raftery (1998)](https://sites.stat.washington.edu/people/raftery/Research/PDF/fraley1998.pdf) $z_2=1-z_1$ and $\pi_2= 1- \pi_1$
## EM algorithm
If we would know the cluster membership, we could estimate all model parameters based on the complete likelihood.
Note, that the complete likelihood also factorises nicely!
However, the cluster membership is unknown.
The EM algorithm has been developed for missing data problems.
It is an iterative algorithm that consists of two steps:
1. E-step: calculate the expected log likelihood given the data and the current model parameter estimates
2. M-step: maximise the expected log-likelihood
3. Iterate between 1 and 2 until convergence.
### E-step
In iteration m+1
\begin{eqnarray}
Q\left(\mu_1,\mu_2,\pi_1\vert \mathbf{X, Z}\right)&=&
E\left[l\left(\mu_1,\mu_2,\pi_1\vert \mathbf{X, Z}\right)\vert \mathbf{X}, \mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m\right]\\ &=&
E\left[\sum_{i=1}^n z_{i1} \log\left[\pi_1 f_1(x_i)\right] + (1-z_{i1})\log \left[(1-\pi_1) f_2(x_i)\right]\vert \mathbf{X}, \mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m\right]\\
&=&\sum_{i=1}^n E\left[z_{i1}\vert x_i,\mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m\right]\log \left[\pi_1 f_1(x_i)\right] + \sum_{i=1}^n \left(1- E\left[z_{i1}\vert x_i,\mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m\right]\right)\log \left[(1-\pi_1) f_2(x_i)\right]
\end{eqnarray}
Note, that the expected log likelihood simplifies to replacing the unknown class memberships in the complete likelihood by their expected values.
\begin{eqnarray}
E\left[z_{i1}\vert \mathbf{X},\mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m\right] &=& 1 \times f(z_{i1}=1 \vert x_i,\mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m) + 0 \times f(z_{i1}=0 \vert x_i,\mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m) \\\\
&=& f(z_{i1}= 1 \vert x_i,\mu_1=\mu_1^m, \mu_2=\mu_2^m, \pi_1=\pi_1^m)\\\\
&=& \frac{f(z=1,x_i)}{f(x_i)}\\\\
&=& \frac{\pi^m_1 f_1(x_i)}{\pi^m_1 f_1(x_i)+(1-\pi^m_1) f_2(x_i)}
\end{eqnarray}
We will refer to the expected class membership as $\hat z_{i1}^{m+1}$
### M-step
Maximise the expected log-likelihood to obtain the unknown model parameters:
\[
Q\left(\mu_1,\mu_2,\pi_1\vert \mathbf{X, Z}\right) = \sum_{i=1}^n \hat z_{i1}^m \log \pi_1 + \sum_{i=1}^n \hat z_{i1}^m \log f_1(x_i) + \sum_{i=1}^n\left(1- \hat z_{i1}\right)\log (1-\pi_1) +
\sum_{i=1}^n\left(1- \hat z_{i1}\right)\log f_2(x_i)
\]
So we observe that the expected log likelihood implies an estimation orthogonality between the normal distributions and the Bernoulli distribution.
So the parameter estimates that maximise the expected log-likelihood become:
\[
\hat \pi_1^{m+1} =\frac{\sum_{i=1}^n \hat z_{i1}^{m+1}}{n}\]
\[
\hat \mu_1^{m+1} = \frac{\sum_{i=1}^n \hat z_{i1}^{m+1} x_i}{\sum_{i=1}^n \hat z_{i1}^{m+1}}\]
\[
\hat \mu_2^{m+1} = \frac{\sum_{i=1}^n (1- \hat z_{i1}^{m+1}) x_i}{\sum_{i=1}^n (1-\hat z_{i1}^{m+1})}
\]
# Example
## Initialize
```{r}
z <- as.double(x > 0)
n <- length(z)
p <- data.frame(x,zReal,z) %>%
ggplot(aes(zReal,x,color=z)) +
geom_point() +
scale_colour_gradient2(
low = "blue",
mid="white",
high="red",
midpoint = 0.5) +
geom_point(x=.95,y=mu1Real, shape=25, col="red", size=3) +
geom_point(x=0.05,y=mu2Real, shape=25, col="blue", size=3) +
ggtitle("Simulated data with real group means (triangles)")
p
```
## EM algorithm
```{r}
for (k in 1:10)
{
## M-step
pi1 <- sum(z)/n
mu1 <- sum(z * x)/sum(z)
mu2 <- sum((1-z) * x)/sum(1-z)
## E-step
d1 <- dnorm(x,mean=mu1)
d2 <- dnorm(x,mean=mu2)
d <- pi1 * d1 + (1-pi1)*d2
z <- pi1*d1/d
p <- data.frame(x,zReal,z) %>%
ggplot(aes(zReal,x,color=z)) +
geom_point() +
scale_colour_gradient2(
low = "blue",
mid="white",
high="red",
midpoint = 0.5) +
geom_point(x=.95,y=mu1Real, shape=25, col="red", size=3) +
geom_point(x=0.05,y=mu2Real, shape=25, col="blue", size=3) +
geom_point(x=.95,y=mu1, shape=3, col="red", size=3) +
geom_point(x=.05,y=mu2, shape=3, col="blue", size=3) +
ggtitle(paste0("iteration ",k, " real mean (triangle), estimate mean (+)"))
print(p)
}
```
### Estimates
```{r echo=FALSE}
zInit <- as.double(x > 0)
mu1Init <- sum(zInit*x)/sum(zInit)
mu2Init <- sum((1-zInit)*x)/sum((1-zInit))
pi1Init <- mean(zInit)
knitr::kable(data.frame(
parameter = c("mu1", "mu2", "pi1"),
population = c(mu1Real, mu2Real, pi1Real),
initial = c(mu1Init, mu2Init, pi1Init) %>% round(3),
estimate = c(mu1, mu2, pi1) %>% round(3)
)
)
```
```{r, child="_session-info.Rmd"}
```