diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c index dc6eb088d73e3..9fd0348be7f5e 100644 --- a/fs/btrfs/tree-log.c +++ b/fs/btrfs/tree-log.c @@ -5526,16 +5526,29 @@ static int btrfs_log_inode(struct btrfs_trans_handle *trans, spin_lock(&inode->lock); inode->logged_trans = trans->transid; /* - * Don't update last_log_commit if we logged that an inode exists - * after it was loaded to memory (full_sync bit set). - * This is to prevent data loss when we do a write to the inode, - * then the inode gets evicted after all delalloc was flushed, - * then we log it exists (due to a rename for example) and then - * fsync it. This last fsync would do nothing (not logging the - * extents previously written). + * Don't update last_log_commit if we logged that an inode exists. + * We do this for two reasons: + * + * 1) We might have had buffered writes to this inode that were + * flushed and had their ordered extents completed in this + * transaction, but we did not previously log the inode with + * LOG_INODE_ALL. Later the inode was evicted and after that + * it was loaded again and this LOG_INODE_EXISTS log operation + * happened. We must make sure that if an explicit fsync against + * the inode is performed later, it logs the new extents, an + * updated inode item, etc, and syncs the log. The same logic + * applies to direct IO writes instead of buffered writes. + * + * 2) When we log the inode with LOG_INODE_EXISTS, its inode item + * is logged with an i_size of 0 or whatever value was logged + * before. If later the i_size of the inode is increased by a + * truncate operation, the log is synced through an fsync of + * some other inode and then finally an explicit fsync against + * this inode is made, we must make sure this fsync logs the + * inode with the new i_size, the hole between old i_size and + * the new i_size, and syncs the log. */ - if (inode_only != LOG_INODE_EXISTS || - !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags)) + if (inode_only != LOG_INODE_EXISTS) inode->last_log_commit = inode->last_sub_trans; spin_unlock(&inode->lock); }