-
-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathhepatitisME.stan
74 lines (66 loc) · 1.95 KB
/
hepatitisME.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Hepatitis: a normal hierarchical model with measurement
// error
// http://openbugs.net/Examples/Hepatitis.html
// model the measurement eror here (compared with hepatitis.stan)
//# note that we have missing data in the orignal data Y[N, T];
//# here, we turn Y[N, T] into Yvec with the missing
//# data removed.
data {
int<lower=0> N1; //# N1 is the length of the vector, Yvec1, that is
int<lower=0> N; //# created from concatenate columns of matrix Y[N, T]
array[N1] real Yvec1; //# with NA's removed.
array[N1] real tvec1; //# N is the nrow of original matrix Y[N, T]
array[N1] int<lower=0> idxn1; //# idxn1 maps Yvec to its orignal n index
array[N] real y0;
}
transformed data {
real y0_mean;
y0_mean = mean(y0);
}
parameters {
real<lower=0> sigmasq_y;
real<lower=0> sigmasq_alpha;
real<lower=0> sigmasq_beta;
real<lower=0> sigma_mu0;
real gamma;
real alpha0;
real beta0;
real theta;
array[N] real mu0;
array[N] real alpha;
array[N] real beta;
}
transformed parameters {
real<lower=0> sigma_y;
real<lower=0> sigma_alpha;
real<lower=0> sigma_beta;
sigma_y = sqrt(sigmasq_y);
sigma_alpha = sqrt(sigmasq_alpha);
sigma_beta = sqrt(sigmasq_beta);
}
model {
int oldn;
array[N1] real m;
for (n in 1 : N1) {
oldn = idxn1[n];
m[n] = alpha[oldn] + beta[oldn] * (tvec1[n] - 6.5)
+ gamma * (mu0[oldn] - y0_mean);
}
Yvec1 ~ normal(m, sigma_y);
mu0 ~ normal(theta, sigma_mu0);
//# It is a bit weird that to specify gamma prior on sigma_mu0 instead on gamma_mu0^2
//# in the bugs example.
for (n in 1 : N) {
y0[n] ~ normal(mu0[n], sigma_y);
}
alpha ~ normal(alpha0, sigma_alpha);
beta ~ normal(beta0, sigma_beta);
sigmasq_y ~ inv_gamma(.001, .001);
sigmasq_alpha ~ inv_gamma(.001, .001);
sigmasq_beta ~ inv_gamma(.001, .001);
sigma_mu0 ~ inv_gamma(.001, .001);
alpha0 ~ normal(0, 1000);
beta0 ~ normal(0, 1000);
gamma ~ normal(0, 1000);
theta ~ normal(0, 1000);
}