-
-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy path4.6_RegressionModelsForPrediction.R
52 lines (38 loc) · 1.77 KB
/
4.6_RegressionModelsForPrediction.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
library(rstan)
### Data
source("mesquite.data.R", echo = TRUE)
### First model: weight ~ diam1 + diam2 + canopy.height + total.height + density + group
data.list <- c("N", "weight", "diam1", "diam2", "canopy_height", "total_height",
"density", "group")
mesquite.sf <- stan(file='mesquite.stan', data=data.list,
iter=1000, chains=4)
print(mesquite.sf)
### Log model: log(weight) ~ log(diam1) + log(diam2) + log(canopy.height)
### + log(total.height) + log(density) + group
mesquite_log.sf <- stan(file='mesquite_log.stan', data=data.list,
iter=1000, chains=4)
print(mesquite_log.sf)
### Volume model: log(weight) ~ log(canopy_volume)
# canopy_volume <- diam1 * diam2 * canopy_height
mesquite_volume.sf <- stan(file='mesquite_volume.stan', data=data.list,
iter=1000, chains=4)
print(mesquite_volume.sf)
### Volume, area & shape model:
# log(weight) ~ log(canopy.volume) + log(canopy.area) + log(canopy.shape)
# + log(total.height) + log(density) + group
# canopy_volume <- diam1 * diam2 * canopy_height
# canopy_area <- diam1 * diam2
# canopy_shape <- diam1 / diam2
mesquite_vas.sf <- stan(file='mesquite_vas.stan', data=data.list,
iter=1000, chains=4)
print(mesquite_vas.sf)
### Last two models
# log(weight) ~ log(canopy_volume) + log(canopy_area) + group
mesquite_va.sf <- stan(file='mesquite_va.stan', data=data.list,
iter=1000, chains=4)
print(mesquite_va.sf)
# log(weight) ~ log(canopy_volume) + log(canopy_area) + log(canopy_shape)
# + log(total_height) + group
mesquite_vash.sf <- stan(file='mesquite_vash.stan', data=data.list,
iter=1000, chains=4)
print(mesquite_vash.sf)