-
-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathearnings_latin_square_chr.stan
75 lines (69 loc) · 1.69 KB
/
earnings_latin_square_chr.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
data {
int<lower=0> N;
int<lower=0> n_age;
int<lower=0> n_eth;
array[N] int<lower=1, upper=n_age> age;
array[N] int<lower=1, upper=n_eth> eth;
vector[N] x_centered;
vector[N] y;
}
parameters {
vector[n_eth] eta_a1;
vector[n_eth] eta_a2;
vector[n_age] eta_b1;
vector[n_age] eta_b2;
matrix[n_eth, n_age] eta_c;
matrix[n_eth, n_age] eta_d;
real mu_a1;
real mu_a2;
real mu_b1;
real mu_b2;
real mu_c;
real mu_d;
real<lower=0, upper=100> sigma_a1;
real<lower=0, upper=100> sigma_a2;
real<lower=0, upper=100> sigma_b1;
real<lower=0, upper=100> sigma_b2;
real<lower=0, upper=100> sigma_c;
real<lower=0, upper=100> sigma_d;
real<lower=0, upper=100> sigma_y;
}
transformed parameters {
vector[n_eth] a1;
vector[n_eth] a2;
vector[n_age] b1;
vector[n_age] b2;
matrix[n_eth, n_age] c;
matrix[n_eth, n_age] d;
vector[N] y_hat;
a1 = 5 * mu_a1 + sigma_a1 * eta_a1;
a2 = mu_a2 + sigma_a2 * eta_a2;
b1 = 5 * mu_b1 + sigma_b1 * eta_b1;
b2 = 0.1 * mu_b2 + sigma_b2 * eta_b2;
c = 0.1 * mu_c + sigma_c * eta_c;
d = 0.01 * mu_d + sigma_d * eta_d;
for (i in 1 : N) {
y_hat[i] = a1[eth[i]] + a2[eth[i]] * x_centered[i] + b1[age[i]]
+ b2[age[i]] * x_centered[i] + c[eth[i], age[i]]
+ d[eth[i], age[i]] * x_centered[i];
}
}
model {
mu_a1 ~ normal(0, 1);
mu_a2 ~ normal(0, 1);
eta_a1 ~ normal(0, 1);
eta_a2 ~ normal(0, 1);
mu_b1 ~ normal(0, 1);
mu_b2 ~ normal(0, 1);
eta_b1 ~ normal(0, 1);
eta_b2 ~ normal(0, 1);
mu_c ~ normal(0, 1);
for (j in 1 : n_eth) {
eta_c[j] ~ normal(0, 1);
}
mu_d ~ normal(0, 1);
for (j in 1 : n_eth) {
eta_d[j] ~ normal(0, 1);
}
y ~ normal(y_hat, sigma_y);
}