forked from chen0040/keras-recommender
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcf.py
322 lines (247 loc) · 13.5 KB
/
cf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from keras.models import Model
from keras.callbacks import ModelCheckpoint
from keras.layers import dot, concatenate, Embedding, Input, Flatten, Dropout, Dense
import numpy as np
from sklearn.metrics import mean_absolute_error
import pandas as pd
EMBEDDING_SIZE = 100
VERBOSE = 1
class CollaborativeFilteringV1(object):
model_name = 'cf-v1'
def __init__(self):
self.model = None
self.max_user_id = 0
self.max_item_id = 0
self.config = None
def load_model(self, config_file_path, weight_file_path):
self.config = np.load(config_file_path).item()
self.max_user_id = self.config['max_user_id']
self.max_item_id = self.config['max_item_id']
self.model = self.create_model()
self.model.load_weights(weight_file_path)
@staticmethod
def get_config_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringV1.model_name + '-config.npy'
@staticmethod
def get_weight_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringV1.model_name + '-weights.h5'
@staticmethod
def get_architecture_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringV1.model_name + '-architecture.json'
def create_model(self):
user_id_input = Input(shape=[1], name='user')
item_id_input = Input(shape=[1], name='item')
user_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_user_id + 1,
input_length=1, name='user_embedding')(user_id_input)
item_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_item_id + 1,
input_length=1, name='item_embedding')(item_id_input)
# reshape from shape: (batch_size, input_length, embedding_size)
# to shape: (batch_size, input_length * embedding_size) which is
# equal to shape: (batch_size, embedding_size)
user_vecs = Flatten()(user_embedding)
item_vecs = Flatten()(item_embedding)
# y = merge([user_vecs, item_vecs], mode='dot', output_shape=(1,))
y = dot([user_vecs, item_vecs], axes=1)
model = Model(inputs=[user_id_input, item_id_input], outputs=[y])
model.compile(optimizer='adam', loss='mae')
return model
def fit(self, config, user_id_train, item_id_train, rating_train, model_dir_path, batch_size=None, epoches=None, validation_split=None):
if batch_size is None:
batch_size = 64
if epoches is None:
epoches = 20
if validation_split is None:
validation_split = 0.1
self.config = config
self.max_item_id = config['max_item_id']
self.max_user_id = config['max_user_id']
np.save(CollaborativeFilteringV1.get_config_file_path(model_dir_path=model_dir_path), self.config)
self.model = self.create_model()
open(CollaborativeFilteringV1.get_architecture_file_path(model_dir_path=model_dir_path), 'w').write(self.model.to_json())
weight_file_path = CollaborativeFilteringV1.get_weight_file_path(model_dir_path)
checkpoint = ModelCheckpoint(weight_file_path)
history = self.model.fit([user_id_train, item_id_train], rating_train,
batch_size=batch_size, epochs=epoches, validation_split=validation_split,
shuffle=True, verbose=VERBOSE, callbacks=[checkpoint])
self.model.save_weights(weight_file_path)
return history
def predict(self, user_ids, item_ids):
predicted = self.model.predict([user_ids, item_ids])
return predicted
def predict_single(self, user_id, item_id):
predicted = self.model.predict([pd.Series([user_id]), pd.Series([item_id])])[0][0]
return predicted
def evaluate(self, user_id_test, item_id_test, rating_test):
test_preds = self.model.predict([user_id_test, item_id_test]).squeeze()
mae = mean_absolute_error(test_preds, rating_test)
print("Final test MAE: %0.3f" % mae)
return {'mae': mae}
class CollaborativeFilteringV2(object):
model_name = 'cf-v2'
def __init__(self):
self.model = None
self.max_user_id = 0
self.max_item_id = 0
self.config = None
def load_model(self, config_file_path, weight_file_path):
self.config = np.load(config_file_path).item()
self.max_user_id = self.config['max_user_id']
self.max_item_id = self.config['max_item_id']
self.model = self.create_model()
self.model.load_weights(weight_file_path)
@staticmethod
def get_config_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringV2.model_name + '-config.npy'
@staticmethod
def get_weight_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringV2.model_name + '-weights.h5'
@staticmethod
def get_architecture_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringV2.model_name + '-architecture.json'
def create_model(self):
user_id_input = Input(shape=[1], name='user')
item_id_input = Input(shape=[1], name='item')
user_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_user_id + 1,
input_length=1, name='user_embedding')(user_id_input)
item_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_item_id + 1,
input_length=1, name='item_embedding')(item_id_input)
# reshape from shape: (batch_size, input_length, embedding_size)
# to shape: (batch_size, input_length * embedding_size) which is
# equal to shape: (batch_size, embedding_size)
user_vecs = Flatten()(user_embedding)
item_vecs = Flatten()(item_embedding)
input_vecs = concatenate([user_vecs, item_vecs])
input_vecs = Dropout(0.5)(input_vecs)
x = Dense(64, activation='relu')(input_vecs)
y = Dense(1)(x)
model = Model(inputs=[user_id_input, item_id_input], outputs=[y])
model.compile(optimizer='adam', loss='mae')
return model
def fit(self, config, user_id_train, item_id_train, rating_train, model_dir_path, batch_size=None, epoches=None, validation_split=None):
if batch_size is None:
batch_size = 64
if epoches is None:
epoches = 20
if validation_split is None:
validation_split = 0.1
self.config = config
self.max_item_id = config['max_item_id']
self.max_user_id = config['max_user_id']
np.save(CollaborativeFilteringV2.get_config_file_path(model_dir_path=model_dir_path), self.config)
self.model = self.create_model()
open(CollaborativeFilteringV2.get_architecture_file_path(model_dir_path=model_dir_path), 'w').write(self.model.to_json())
weight_file_path = CollaborativeFilteringV2.get_weight_file_path(model_dir_path)
checkpoint = ModelCheckpoint(weight_file_path)
history = self.model.fit([user_id_train, item_id_train], rating_train,
batch_size=batch_size, epochs=epoches, validation_split=validation_split,
shuffle=True, verbose=VERBOSE, callbacks=[checkpoint])
self.model.save_weights(weight_file_path)
return history
def predict(self, user_ids, item_ids):
predicted = self.model.predict([user_ids, item_ids])
return predicted
def evaluate(self, user_id_test, item_id_test, rating_test):
test_preds = self.model.predict([user_id_test, item_id_test]).squeeze()
mae = mean_absolute_error(test_preds, rating_test)
print("Final test MAE: %0.3f" % mae)
return {'mae': mae}
def predict_single(self, user_id, item_id):
predicted = self.model.predict([pd.Series([user_id]), pd.Series([item_id])])[0][0]
return predicted
class CollaborativeFilteringWithTemporalInformation(object):
model_name = 'temporal-cf'
def __init__(self):
self.model = None
self.max_user_id = 0
self.max_item_id = 0
self.max_date = 0
self.min_date = 0
self.config = None
def load_model(self, config_file_path, weight_file_path):
self.config = np.load(config_file_path).item()
self.max_user_id = self.config['max_user_id']
self.max_item_id = self.config['max_item_id']
self.max_date = self.config['max_date']
self.min_date = self.config['min_date']
self.model = self.create_model()
self.model.load_weights(weight_file_path)
@staticmethod
def get_config_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringWithTemporalInformation.model_name + '-config.npy'
@staticmethod
def get_weight_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringWithTemporalInformation.model_name + '-weights.h5'
@staticmethod
def get_architecture_file_path(model_dir_path):
return model_dir_path + '/' + CollaborativeFilteringWithTemporalInformation.model_name + '-architecture.json'
def create_model(self):
user_id_input = Input(shape=[1], name='user')
item_id_input = Input(shape=[1], name='item')
meta_input = Input(shape=[1], name='meta_item')
user_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_user_id + 1,
input_length=1, name='user_embedding')(user_id_input)
item_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_item_id + 1,
input_length=1, name='item_embedding')(item_id_input)
# reshape from shape: (batch_size, input_length, embedding_size)
# to shape: (batch_size, input_length * embedding_size) which is
# equal to shape: (batch_size, embedding_size)
user_vecs = Flatten()(user_embedding)
item_vecs = Flatten()(item_embedding)
input_vecs = concatenate([user_vecs, item_vecs, meta_input])
input_vecs = Dropout(0.5)(input_vecs)
x = Dense(64, activation='relu')(input_vecs)
y = Dense(1)(x)
model = Model(inputs=[user_id_input, item_id_input, meta_input], outputs=[y])
model.compile(optimizer='adam', loss='mae')
return model
def fit(self, config, user_id_train, item_id_train, timestamp_train, rating_train, model_dir_path, batch_size=None, epoches=None, validation_split=None):
if batch_size is None:
batch_size = 64
if epoches is None:
epoches = 20
if validation_split is None:
validation_split = 0.1
self.config = config
self.max_item_id = config['max_item_id']
self.max_user_id = config['max_user_id']
parsed_dates = [int(str(item_date)[-4:])
for item_date in timestamp_train.tolist()]
parsed_dates = pd.Series(parsed_dates, index=timestamp_train.index)
max_date = max(parsed_dates)
min_date = min(parsed_dates)
timestamp_train = (parsed_dates - min_date) / (max_date - min_date)
self.max_date = max_date
self.min_date = min_date
self.config['max_date'] = max_date
self.config['min_date'] = min_date
np.save(CollaborativeFilteringWithTemporalInformation.get_config_file_path(model_dir_path=model_dir_path), self.config)
self.model = self.create_model()
open(CollaborativeFilteringWithTemporalInformation.get_architecture_file_path(model_dir_path=model_dir_path), 'w').write(self.model.to_json())
weight_file_path = CollaborativeFilteringWithTemporalInformation.get_weight_file_path(model_dir_path)
checkpoint = ModelCheckpoint(weight_file_path)
history = self.model.fit([user_id_train, item_id_train, timestamp_train], rating_train,
batch_size=batch_size, epochs=epoches, validation_split=validation_split,
shuffle=True, verbose=VERBOSE, callbacks=[checkpoint])
self.model.save_weights(weight_file_path)
return history
def predict(self, user_ids, item_ids, timestamps):
timestamps = pd.Series([int(str(item_date)[-4:])
for item_date in timestamps.tolist()], index=timestamps.index)
timestamps = (timestamps - self.min_date) / (self.max_date - self.min_date)
predicted = self.model.predict([user_ids, item_ids, timestamps])
return predicted
def evaluate(self, user_id_test, item_id_test, timestamp_test, rating_test):
timestamp_test = pd.Series([int(str(item_date)[-4:])
for item_date in timestamp_test.tolist()], index=timestamp_test.index)
timestamp_test = (timestamp_test - self.min_date) / (self.max_date - self.min_date)
test_preds = self.model.predict([user_id_test, item_id_test, timestamp_test]).squeeze()
mae = mean_absolute_error(test_preds, rating_test)
print("Final test MAE: %0.3f" % mae)
return {'mae': mae}
def predict_single(self, user_id, item_id, timestamp):
timestamps = pd.Series([timestamp])
timestamps = pd.Series([int(str(item_date)[-4:])
for item_date in timestamps.tolist()], index=timestamps.index)
timestamps = (timestamps - self.min_date) / (self.max_date - self.min_date)
predicted = self.model.predict([pd.Series([user_id]), pd.Series([item_id]), timestamps])[0][0]
return predicted