-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathEgg Dropping Puzzle.cpp
70 lines (62 loc) · 1.8 KB
/
Egg Dropping Puzzle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// A Dynamic Programming based for
// the Egg Dropping Puzzle
#include <limits.h>
#include <stdio.h>
// A utility function to get
// maximum of two integers
int max(int a, int b)
{
return (a > b) ? a : b;
}
/* Function to get minimum
number of trials needed in worst
case with n eggs and k floors */
int eggDrop(int n, int k)
{
/* A 2D table where entery
eggFloor[i][j] will represent
minimum number of trials needed for
i eggs and j floors. */
int eggFloor[n + 1][k + 1];
int res;
int i, j, x;
// We need one trial for one floor and 0
// trials for 0 floors
for (i = 1; i <= n; i++) {
eggFloor[i][1] = 1;
eggFloor[i][0] = 0;
}
// We always need j trials for one egg
// and j floors.
for (j = 1; j <= k; j++)
eggFloor[1][j] = j;
// Fill rest of the entries in table using
// optimal substructure property
for (i = 2; i <= n; i++) {
for (j = 2; j <= k; j++) {
eggFloor[i][j] = INT_MAX;
for (x = 1; x <= j; x++) {
res = 1 + max(
eggFloor[i - 1][x - 1],
eggFloor[i][j - x]);
if (res < eggFloor[i][j])
eggFloor[i][j] = res;
}
}
}
// eggFloor[n][k] holds the result
return eggFloor[n][k];
}
/* Driver program to test to pront printDups*/
int main()
{
int n = 2, k = 36;
printf("\nMinimum number of trials "
"in worst case with %d eggs and "
"%d floors is %d \n",
n, k, eggDrop(n, k));
return 0;
}
//Output :
//Minimum number of trials in worst
//case with 2 eggs and 36 floors is 8