-
Notifications
You must be signed in to change notification settings - Fork 0
/
PseudoPalindromicPathsInABinaryTree.ts
97 lines (85 loc) · 3.27 KB
/
PseudoPalindromicPathsInABinaryTree.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Source : https://leetcode.com/problems/pseudo-palindromic-paths-in-a-binary-tree/
// Author : francisco
// Date : 2024-01-24
/*****************************************************************************************************
*
* Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to
* be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.
*
* Return the number of pseudo-palindromic paths going from the root node to leaf nodes.
*
* Example 1:
*
* Input: root = [2,3,1,3,1,null,1]
* Output: 2
* Explanation: The figure above represents the given binary tree. There are three paths going from
* the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1].
* Among these paths only red path and green path are pseudo-palindromic paths since the red path
* [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in
* [1,2,1] (palindrome).
*
* Example 2:
*
* Input: root = [2,1,1,1,3,null,null,null,null,null,1]
* Output: 1
* Explanation: The figure above represents the given binary tree. There are three paths going from
* the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among
* these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1]
* (palindrome).
*
* Example 3:
*
* Input: root = [9]
* Output: 1
*
* Constraints:
*
* The number of nodes in the tree is in the range [1, 10^5].
* 1 <= Node.val <= 9
******************************************************************************************************/
export type BT = NodeTree | null;
export class NodeTree {
val: number;
left: BT;
right: BT;
constructor(val: number = 0, left: BT = null, right: BT = null) {
this.val = val;
this.left = left;
this.right = right;
}
}
/**
* @param {BT}
* @returns {number}
* return the number of pseudo-palindromic paths going from the root node to leaf nodes
* NOTE: a path is said to be pseudo-palindromic if at least one permutation of the node
* values in the path is a palidrome
* NOTE: path is root to leaf!!!
* Tests:
* I: root = [2,3,1,3,1,null,1] -> O: 2
* I: root = [2,1,1,1,3,null,null,null,null,null,1] -> O: 1
* I: root = [9] -> O: 1
* I: root = [8,8,null,7,7,null,null,2,4,null,8,null,7,null,1] -> O: 2
Template: binary tree recursion dfs
* base case: node === null -> return 0
* second base case: leaf-node? (node.left === null && node.right === null)
* check for pseudo-palindrome: at most one digit has an odd frequency - bit manipulation
* Time Complexity: O(n), where n is the number of nodes
* Space Complexity: O(h), where h is the height of the tree
*/
export function pseudoPalindromicPaths(root: BT): number {
function dfs(node: BT, path: number): number {
if (node === null) return 0;
else if (node.left === null && node.right === null) {
// if current is pseudo-palindrome return 1; otherwise return 0
const newPath: number = path ^ (1 << node.val);
if ((newPath & (newPath - 1)) === 0) return 1;
return 0;
}
return (
dfs(node.left, path ^ (1 << node.val)) +
dfs(node.right, path ^ (1 << node.val))
);
}
return dfs(root, 0);
}