-
Notifications
You must be signed in to change notification settings - Fork 23
/
document.py
436 lines (346 loc) · 14.3 KB
/
document.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#!/usr/bin/env python
import re
from logging import warn
from itertools import chain
from common import pairwise, sentence_to_tokens
from sentencesplit import text_to_sentences
from tagsequence import is_tag, is_start_tag, is_continue_tag, OUT_TAG
# TODO: standoff.py interface should be narrower
from standoff import Textbound, parse_textbounds, eliminate_overlaps, \
verify_textbounds, filter_textbounds, retag_document
# UI identifiers for supported formats
TEXT_FORMAT = 'text'
STANDOFF_FORMAT = 'standoff'
NERSUITE_FORMAT = 'nersuite'
CONLL_FORMAT = 'conll'
BC2GM_FORMAT = 'bc2gm'
FORMATS = [
TEXT_FORMAT,
STANDOFF_FORMAT,
NERSUITE_FORMAT,
CONLL_FORMAT,
BC2GM_FORMAT,
]
DEFAULT_FORMAT=NERSUITE_FORMAT
# TODO: remove once https://github.com/nlplab/nersuite/issues/28 is resolved
NERSUITE_TOKEN_MAX_LENGTH = 500
class Token(object):
"""Token with position in document context, tag, and optional
features."""
def __init__(self, text, start, tag=OUT_TAG, fvec=None):
self.tag = tag
self.text = text
self.start = start
self.end = self.start + len(self.text)
if fvec is None:
self.fvec = []
else:
self.fvec = fvec[:]
assert self.is_valid()
def is_valid(self):
assert self.end == self.start + len(self.text)
assert is_tag(self.tag)
return True
def tagged_type(self):
# TODO: DRY!
assert self.tag and self.tag != OUT_TAG
return self.tag[2:]
def to_nersuite(self, exclude_tag=False):
"""Return Token in NERsuite format."""
if len(self.text) > NERSUITE_TOKEN_MAX_LENGTH:
# NERsuite crashes on very long tokens, this exceptional
# processing seeks to protect against that; see
# https://github.com/nlplab/nersuite/issues/28
import sys
print('Warning: truncating very long token (%d characters) for NERsuite' % len(self.text), file=sys.stderr)
text = self.text[:NERSUITE_TOKEN_MAX_LENGTH]
else:
text = self.text
fields = ([self.tag] if not exclude_tag else []) + \
[str(self.start), str(self.end), str(text)]
return '\t'.join(chain(fields, self.fvec))
def to_conll(self, include_offsets=False):
"""Return Token in CoNLL-like format."""
fields = [str(self.text), self.tag]
if include_offsets:
offsets = [str(self.start), str(self.end)]
fields = fields[:1] + offsets + fields[1:]
return '\t'.join(chain(fields, self.fvec))
@classmethod
def from_text(cls, text, offset=0):
"""Return Token for given text."""
return cls(text, offset)
@classmethod
def from_nersuite(cls, line):
"""Return Token given NERsuite format representation."""
line = line.rstrip('\n')
fields = line.split('\t')
try:
tag, start, end, text = fields[:4]
except ValueError:
raise FormatError('NERsuite format: too few fields ("%s")' % line)
try:
start, end = int(start), int(end)
except ValueError:
raise FormatError('NERsuite format: non-int start/end ("%s")'% line)
if end-start != len(text):
raise FormatError('NERsuite format: length mismatch ("%s")'% line)
return cls(text, start, tag, fields[4:])
class Sentence(object):
"""Sentence containing zero or more Tokens."""
def __init__(self, text, base_offset, tokens):
self.text = text
self.base_offset = base_offset
self.tokens = tokens[:]
assert self.is_valid()
def is_valid(self):
"""Return True if the Sentence is correctly composed of Tokens,
False otherwise."""
for t in self.tokens:
tstart, tend = t.start-self.base_offset, t.end-self.base_offset
assert self.text[tstart:tend] == t.text
assert t.is_valid()
# TODO: check that tokens are non-overlapping and fully cover
# the Sentence text.
return True
def get_tagged(self, relative_offsets=False):
"""Return list of (type, start, end) based on Token tags.
If relative_offsets is True, start and end offsets are
relative to sentence beginning; otherwise, they are absolute
offsets into the document text.
"""
tagged = []
first = None
for t, next_t in pairwise(self.tokens, include_last=True):
if is_start_tag(t.tag):
first = t
if first and not (next_t and is_continue_tag(next_t.tag)):
tagged.append((first.tagged_type(), first.start, t.end))
first = None
if relative_offsets:
tagged = [(t[0], t[1]-self.base_offset, t[2]-self.base_offset)
for t in tagged]
return tagged
def to_nersuite(self, exclude_tag=False):
"""Return Sentence in NERsuite format."""
# empty "sentences" map to nothing in the NERsuite format.
if not self.tokens:
return ''
# tokens with empty or space-only text are ignored
tokens = [t for t in self.tokens if t.text and not t.text.isspace()]
# sentences terminated with empty lines in NERsuite format
return '\n'.join(chain((t.to_nersuite(exclude_tag)
for t in tokens), ['\n']))
def to_conll(self, include_offsets=False):
"""Return Sentence in CoNLL-like format."""
# empty "sentences" map to nothing
if not self.tokens:
return ''
# tokens with empty or space-only text are ignored
tokens = [t for t in self.tokens if t.text and not t.text.isspace()]
# sentences terminated with empty lines
return '\n'.join(chain((t.to_conll(include_offsets) for t in tokens),
['\n']))
def standoffs(self, index):
"""Return sentence annotations as list of Standoff objects."""
textbounds = []
for type_, start, end in self.get_tagged():
tstart, tend = start-self.base_offset, end-self.base_offset
textbounds.append(Textbound('T%d' % index, type_, start, end,
self.text[tstart:tend]))
index += 1
return textbounds
def get_tags(self):
"""Return set of all tags in Sentence."""
tags = set()
for t in self.tokens:
tags.add(t.tag)
return tags
def __len__(self):
"""Return length of Sentence in Tokens."""
return len(self.tokens)
@classmethod
def from_text(cls, text, base_offset=0, tokenization_re=None):
tokens = []
offset = 0
for t in sentence_to_tokens(text, tokenization_re):
if not t.isspace():
tokens.append(Token.from_text(t, offset+base_offset))
offset += len(t)
return cls(text, base_offset, tokens)
@classmethod
def from_nersuite(cls, lines, base_offset=0):
"""Return Sentence given NERsuite format lines."""
tokens = []
for line in lines:
tokens.append(Token.from_nersuite(line))
if tokens:
base_offset = tokens[0].start
# The NERsuite format makes no record of space, so text needs
# to be approximated.
texts = []
prev_offset = base_offset
for t in tokens:
texts.append(' ' * (t.start-prev_offset))
texts.append(t.text)
prev_offset = t.end
text = ''.join(texts)
return cls(text, base_offset, tokens)
class Document(object):
"""Text document containing zero or more Sentences."""
def __init__(self, text, sentences):
self.text = text
self.sentences = sentences[:]
self.id = None
assert self.is_valid()
def is_valid(self):
"""Return True if the Document is valid (correctly composed of
Sentences etc.), False otherwise."""
assert ''.join(s.text for s in self.sentences) == self.text
assert not any(not s.is_valid() for s in self.sentences)
# TODO: check that annotations are within doc span etc.
return True
def standoffs(self):
"""Return document annotations as list of Standoff objects."""
index = 1
standoffs = []
for s in self.sentences:
s_standoffs = s.standoffs(index)
standoffs.extend(s_standoffs)
index += len(s_standoffs)
return standoffs
def get_tags(self):
"""Return set of all tags in Document."""
tags = set()
for s in self.sentences:
tags |= s.get_tags()
return tags
def to_nersuite(self, exclude_tag=False):
"""Return Document in NERsuite format."""
return ''.join((s.to_nersuite(exclude_tag) for s in self.sentences))
def to_conll(self, include_offsets=False, include_docid=False):
"""Return Document in CoNLL-like format."""
if not include_docid:
s = ''
else:
s = '# doc_id = %s\n' % self.id
return s+''.join((s.to_conll(include_offsets) for s in self.sentences))
def to_standoff(self):
"""Return Document annotations in BioNLP ST/brat-flavored
standoff format."""
standoffs = self.standoffs()
return '\n'.join(str(s) for s in standoffs)+'\n' if standoffs else ''
def to_bc2gm(self):
"""Return Document annotations in BioCreative 2 Gene Mention
format."""
lines = []
for s in self.sentences:
tagged = s.get_tagged(relative_offsets=True)
tagged = [(t[0], t[1], t[2], s.text[t[1]:t[2]]) for t in tagged]
# The BC2GM format ignores space when counting offsets,
# and is inclusive for the end offset. Create mapping
# from standard to no-space offsets and remap.
offset_map = {}
o = 0
for i, c in enumerate(s.text):
if not c.isspace():
offset_map[i] = o
o += 1
tagged = [(t[0], offset_map[t[1]], offset_map[t[2]-1], t[3])
for t in tagged]
for t in tagged:
lines.append('%s|%d %d|%s\n' % (self.sentence_id(s),
t[1], t[2], t[3]))
return ''.join(lines)
def bc2gm_text(self):
return ''.join(['%s %s\n' % (self.sentence_id(s), s.text)
for s in self.sentences])
def sentence_id(self, s):
return 'P%sO%d' % (self.id, s.base_offset)
def __len__(self):
"""Return length of Document in Sentences."""
return len(self.sentences)
@classmethod
def from_text(cls, text, sentence_split=True, annotations=None,
tokenization_re=None):
"""Return Document with given text and no annotations.
If annotations is not None, avoid creating sentence splits
that would split given annotations.
"""
split = text_to_sentences(text, sentence_split)
assert ''.join(split) == text, 'sentence split mismatch'
if sentence_split and annotations:
# Re-join splits that break up annotations (TODO: avoid O(nm))
rejoined = []
o, prev = 0, None
for s in split:
if any(a for a in annotations if a.start < o and a.end >= o):
warn('rejoin ssplit: {} /// {}'.format(
prev.encode('utf-8'), s.encode('utf-8')))
rejoined[-1] = rejoined[-1] + s
else:
rejoined.append(s)
o += len(s)
prev = s
split = rejoined
assert ''.join(split) == text, 'sentence rejoin error'
sentences = []
offset = 0
for s in split:
sentences.append(Sentence.from_text(
s, offset, tokenization_re=tokenization_re)
)
offset += len(s)
return cls(text, sentences)
@classmethod
def from_nersuite(cls, text):
"""Return Document given NERsuite format file."""
sentences = []
lines = []
offset = 0
for line in split_keep_separator(text):
if not line:
pass
elif not line.isspace():
lines.append(line)
else:
sentences.append(Sentence.from_nersuite(lines, offset))
if sentences[-1].tokens:
offset = sentences[-1].tokens[-1].end + 1 # guess
lines = []
if lines:
sentences.append(Sentence.from_nersuite(lines, offset))
# Add spaces for gaps implied by token positions but not
# explitly recorded in NERsuite format
for s, next_s in pairwise(sentences):
if s.tokens and next_s.tokens:
gap = next_s.tokens[0].start - s.tokens[-1].end
s.text = s.text + ' ' * gap
# Assure document-final newline (text file)
if sentences and not sentences[-1].text.endswith('\n'):
sentences[-1].text = sentences[-1].text + '\n'
text = ''.join(s.text for s in sentences)
return cls(text, sentences)
@classmethod
def from_standoff(cls, text, annotations, sentence_split=True,
discont_rule=None, overlap_rule=None,
filter_types=None, exclude_types=None,
tokenization_re=None, document_id=None):
"""Return Document given text and standoff annotations."""
# first create a document from the text without annotations
# with all "out" tags (i.e. "O"), then re-tag the tokens based
# on the textbounds.
textbounds = parse_textbounds(annotations, discont_rule)
document = cls.from_text(text, sentence_split, textbounds,
tokenization_re=tokenization_re)
if document_id is not None:
document.id = document_id
if filter_types:
textbounds = filter_textbounds(textbounds, filter_types)
if exclude_types:
textbounds = filter_textbounds(textbounds, exclude_types,
exclude=True)
verify_textbounds(textbounds, text)
textbounds = eliminate_overlaps(textbounds, overlap_rule)
retag_document(document, textbounds)
return document