-
Notifications
You must be signed in to change notification settings - Fork 1
/
parse_nascar_json.py
808 lines (685 loc) · 28.2 KB
/
parse_nascar_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import pandas as pd
import json
from datetime import datetime
import time
from urllib.request import urlopen
from tqdm import tqdm
#import numpy as np
def nascar_series_identification(series: str):
if str.lower(series) == str.lower("series_1") \
or str.lower(series) == str.lower("series_2") \
or str.lower(series) == str.lower("series_3"):
return series
elif str.lower(series) == str.lower("Cup") or \
str.lower(series) == str.lower("Cup Series") or \
str.lower(series) == str.lower("Strictly Stock") or \
str.lower(series) == str.lower("Strictly Stock Division") or \
str.lower(series) == str.lower("Grand National") or \
str.lower(series) == str.lower("Grand National Division") or \
str.lower(series) == str.lower("Winston") or \
str.lower(series) == str.lower("Winston Cup") or \
str.lower(series) == str.lower("Winston Cup Series") or \
str.lower(series) == str.lower("Nextel") or \
str.lower(series) == str.lower("Nextel Cup") or \
str.lower(series) == str.lower("Nextel Cup Series") or \
str.lower(series) == str.lower("Monster") or \
str.lower(series) == str.lower("Monster Cup") or \
str.lower(series) == str.lower("Sprint") or \
str.lower(series) == str.lower("Sprint Cup") or \
str.lower(series) == str.lower("Sprint Cup Series") or \
str.lower(series) == str.lower("Monster Cup Series") or \
str.lower(series) == str.lower("Monster Energy Cup") or \
str.lower(series) == str.lower("Monster Energy Cup Series"):
return "series_1"
elif str.lower(series) == str.lower("Xfinity") or \
str.lower(series) == str.lower("Xfinity Series") or \
str.lower(series) == str.lower("Budweiser") or \
str.lower(series) == str.lower("Budweiser Series") or \
str.lower(series) == str.lower("Late") or \
str.lower(series) == str.lower("Late Model") or \
str.lower(series) == str.lower("Late Model Series") or \
str.lower(series) == str.lower("Sportsman") or \
str.lower(series) == str.lower("Sportsman Series") or \
str.lower(series) == str.lower("Budweiser Late Series") or \
str.lower(series) == str.lower("Budweiser Late Model Series") or\
str.lower(series) == str.lower("Budweiser Sportsman") or \
str.lower(series) == str.lower("Budweiser Sportsman Series") or \
str.lower(series) == str.lower("Budweiser Late Sportsman Series") or \
str.lower(series) == str.lower("Budweiser Late Model Sportsman Series") or \
str.lower(series) == str.lower("Busch") or \
str.lower(series) == str.lower("Busch Series") or \
str.lower(series) == str.lower("Grand National") or \
str.lower(series) == str.lower("Busch Grand National") or \
str.lower(series) == str.lower("Busch Grand National Series") or \
str.lower(series) == str.lower("Buschwhack") or \
str.lower(series) == str.lower("Buschwhacker") or \
str.lower(series) == str.lower("Buschwhacker Series") or \
str.lower(series) == str.lower("Nationwide") or \
str.lower(series) == str.lower("Nationwide Series"):
return "series_2"
elif str.lower(series) == str.lower("Truck") or \
str.lower(series) == str.lower("Truck Series") or \
str.lower(series) == str.lower("Craftsman") or \
str.lower(series) == str.lower("Craftsman Truck") or \
str.lower(series) == str.lower("Craftsman Truck Series") or \
str.lower(series) == str.lower("SuperTruck") or \
str.lower(series) == str.lower("SuperTruck Series") or \
str.lower(series) == str.lower("Camping World") or \
str.lower(series) == str.lower("Camping World Truck") or \
str.lower(series) == str.lower("Camping World Truck Series") or \
str.lower(series) == str.lower("Camping World Series") or \
str.lower(series) == str.lower("Camping") or \
str.lower(series) == str.lower("Camping Truck") or \
str.lower(series) == str.lower("Camping Truck Series") or \
str.lower(series) == str.lower("Camping Series") or \
str.lower(series) == str.lower("Gander") or \
str.lower(series) == str.lower("Gander RV") or \
str.lower(series) == str.lower("Gander RV Truck") or \
str.lower(series) == str.lower("Gander RV Series") or \
str.lower(series) == str.lower("Gander RV Truck Series") or \
str.lower(series) == str.lower("Gander RV and Outdoors") or \
str.lower(series) == str.lower("Gander RV and Outdoors Series") or \
str.lower(series) == str.lower("Gander RV and Outdoors Truck") or \
str.lower(series) == str.lower("Gander RV and Outdoors Truck Series") or \
str.lower(series) == str.lower("Gander RV & Outdoors") or \
str.lower(series) == str.lower("Gander RV & Outdoors Series") or \
str.lower(series) == str.lower("Gander RV & Outdoors Truck") or \
str.lower(series) == str.lower("Gander RV & Outdoors Truck Series") or \
str.lower(series) == str.lower("Gander Outdoors") or \
str.lower(series) == str.lower("Gander Outdoors Series") or \
str.lower(series) == str.lower("Gander Outdoors Truck") or \
str.lower(series) == str.lower("Gander Outdoors Truck Series"):
return "series_3"
elif str.lower(series) == str.lower("all"):
return "all"
else:
raise Exception(f"{series} is not a known series in the NASCAR API.")
def parse_nascar_schedule(season: int, series="Cup"):
def parser(section: str, json_data=None):
main_df = pd.DataFrame()
row_df = pd.DataFrame()
for i in json_data[section]:
row_df = pd.DataFrame()
race_id = i['race_id']
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['series_id'] = i['series_id']
row_df['race_season'] = i['race_season']
row_df['race_name'] = i['race_name']
row_df['race_type_id'] = i['race_type_id']
if i['restrictor_plate'] == True:
row_df['restrictor_plate'] = 1
elif i['restrictor_plate'] == False:
row_df['restrictor_plate'] = 0
else:
raise Exception(
"There is something teribly wrong with your computer.")
row_df['track_id'] = i['track_id']
row_df['track_name'] = i['track_name']
row_df['date_scheduled'] = i['date_scheduled']
row_df['race_date'] = i['race_date']
if i['qualifying_date'] == "1900-01-01T00:00:00":
row_df['qualifying_date'] = None
else:
row_df['qualifying_date'] = i['qualifying_date']
try:
row_df['tunein_date'] = i['tunein_date']
except:
row_df['tunein_date'] = None
row_df['scheduled_distance'] = i['scheduled_distance']
row_df['actual_distance'] = i['actual_distance']
row_df['scheduled_laps'] = i['scheduled_laps']
row_df['actual_laps'] = i['actual_laps']
try:
row_df['stage_1_laps'] = i['stage_1_laps']
except:
row_df['stage_1_laps'] = None
try:
row_df['stage_2_laps'] = i['stage_2_laps']
except:
row_df['stage_2_laps'] = None
try:
row_df['stage_3_laps'] = i['stage_3_laps']
except:
row_df['stage_3_laps'] = None
row_df['number_of_cars_in_field'] = i['number_of_cars_in_field']
row_df['pole_winner_driver_id'] = i['pole_winner_driver_id']
row_df['pole_winner_speed'] = i['pole_winner_speed']
row_df['number_of_lead_changes'] = i['number_of_lead_changes']
row_df['number_of_leaders'] = i['number_of_leaders']
row_df['number_of_cautions'] = i['number_of_cautions']
row_df['number_of_caution_laps'] = i['number_of_caution_laps']
row_df['average_speed'] = i['average_speed']
row_df['total_race_time'] = i['total_race_time']
try:
row_df['margin_of_victory'] = i['margin_of_victory']
except:
row_df['margin_of_victory'] = None
row_df['race_purse'] = i['race_purse']
# row_df['race_comments'] = i['race_comments']
row_df['attendance'] = i['attendance']
row_df['radio_broadcaster'] = i['radio_broadcaster']
row_df['television_broadcaster'] = i['television_broadcaster']
row_df['master_race_id'] = i['master_race_id']
try:
if row_df['inspection_complete'] == True:
row_df['inspection_complete'] = 1
elif row_df['inspection_complete'] == False:
row_df['inspection_complete'] = 0
except:
row_df['inspection_complete'] = None
try:
row_df['playoff_round'] = i['playoff_round']
except:
row_df['playoff_round'] = None
try:
if row_df['is_qualifying_race'] == True:
row_df['is_qualifying_race'] = 1
elif row_df['is_qualifying_race'] == False:
row_df['is_qualifying_race'] = 0
except:
row_df['is_qualifying_race'] = None
try:
row_df['qualifying_race_no'] = i['qualifying_race_no']
except:
row_df['qualifying_race_no'] = None
try:
row_df['qualifying_race_id'] = i['qualifying_race_id']
except:
row_df['qualifying_race_id'] = None
try:
if row_df['has_qualifying'] == True:
row_df['has_qualifying'] = 1
elif row_df['has_qualifying'] == False:
row_df['has_qualifying'] = 0
except:
row_df['has_qualifying'] = None
try:
row_df['winner_driver_id'] = i['winner_driver_id']
except:
row_df['winner_driver_id'] = None
row_df['pole_winner_laptime'] = i['pole_winner_laptime']
main_df = pd.concat([main_df, row_df], ignore_index=True)
del row_df
return main_df
# Validate that the inputted season is valid.
if season < 2015:
raise Exception("NASCAR API does not have schedule data before 2015.")
elif season > datetime.now().year + 1:
raise Exception(
"You are attempting to get a schedule that does not exist right now.\nCheck your input for the season.")
section = nascar_series_identification(series)
url = f"https://cf.nascar.com/cacher/{season}/race_list_basic.json"
response = urlopen(url)
json_data = json.loads(response.read())
schedule_df = pd.DataFrame()
series_one_df = pd.DataFrame()
series_two_df = pd.DataFrame()
series_three_df = pd.DataFrame()
if section == "all" or section == "series_1":
series_one_df = parser("series_1", json_data)
else:
series_one_df = pd.DataFrame()
if section == "all" or section == "series_2":
series_two_df = parser("series_2", json_data)
else:
series_two_df = pd.DataFrame()
schedule_df = pd.concat([series_one_df, series_two_df], ignore_index=True)
if section == "all" or section == "series_3":
series_three_df = parser("series_3", json_data)
else:
series_three_df = pd.DataFrame()
schedule_df = pd.concat([schedule_df, series_three_df], ignore_index=True)
# print(schedule_df)
time.sleep(5)
return schedule_df
def parse_basic_race_results(season: int):
race_info_df = pd.DataFrame()
race_results_df = pd.DataFrame()
race_cautions_df = pd.DataFrame()
race_leaders_df = pd.DataFrame()
race_stage_results_df = pd.DataFrame()
race_infractions_df = pd.DataFrame()
race_pit_reports_df = pd.DataFrame()
row_df = pd.DataFrame()
if season < 2018:
raise Exception("\nNASCAR API does not have live race data before 2018.")
elif season > datetime.now().year + 1:
raise Exception("\nYou are attempting to get a race that does not exist right now.\nCheck your input for the season.")
schedule_df = parse_nascar_schedule(season, "all")
race_ids_list = schedule_df['race_id'].to_numpy()
race_levels_list = schedule_df['series_id'].to_numpy()
race_seasons_list = schedule_df['race_season'].to_numpy()
for i in tqdm(range(0,len(race_ids_list))):
row_df = pd.DataFrame()
has_race_data = True
race_id = int(race_ids_list[i])
race_level = int(race_levels_list[i])
race_season = int(race_seasons_list[i])
'https://cf.nascar.com/cacher/2015/1/4389/weekend-feed.json'
print(f'\n{race_id}')
'https://cf.nascar.com/cacher/2021/1/5087/weekend-feed.json',
url = f'https://cf.nascar.com/cacher/{race_season}/{race_level}/{race_id}/weekend-feed.json'
try:
response = urlopen(url)
has_race_data = True
json_data = json.loads(response.read())
time.sleep(1)
except:
time.sleep(3)
has_race_data = False
if has_race_data == True:
for j in json_data['weekend_race']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['series_id'] = race_level
row_df['race_season'] = race_season
row_df['race_name'] = j['race_name']
row_df['race_type_id'] = j['race_type_id']
row_df['restrictor_plate'] = j['restrictor_plate']
row_df['track_id'] = j['track_id']
row_df['track_name'] = j['track_name']
row_df['date_scheduled'] = j['date_scheduled']
row_df['race_date'] = j['race_date']
row_df['qualifying_date'] = j['qualifying_date']
try:
row_df['tunein_date'] = j['tunein_date']
except:
row_df['tunein_date']= None
row_df['scheduled_distance'] = j['scheduled_distance']
row_df['actual_distance'] = j['actual_distance']
row_df['scheduled_laps'] = j['scheduled_laps']
row_df['actual_laps'] = j['actual_laps']
row_df['stage_1_laps'] = j['stage_1_laps']
row_df['stage_2_laps'] = j['stage_2_laps']
row_df['stage_3_laps'] = j['stage_3_laps']
try:
row_df['stage_4_laps'] = j['stage_4_laps']
except:
row_df['stage_4_laps'] = None
row_df['number_of_cars_in_field'] = j['number_of_cars_in_field']
row_df['pole_winner_driver_id'] = j['pole_winner_driver_id']
row_df['pole_winner_speed'] = j['pole_winner_speed']
row_df['number_of_lead_changes'] = j['number_of_lead_changes']
row_df['number_of_leaders'] = j['number_of_leaders']
row_df['number_of_cautions'] = j['number_of_cautions']
row_df['number_of_caution_laps'] = j['number_of_caution_laps']
row_df['average_speed'] = j['average_speed']
row_df['total_race_time'] = j['total_race_time']
row_df['margin_of_victory'] = j['margin_of_victory']
row_df['race_purse'] = j['race_purse']
row_df['attendance'] = j['attendance']
row_df['radio_broadcaster'] = j['radio_broadcaster']
row_df['television_broadcaster'] = j['television_broadcaster']
row_df['master_race_id'] = j['master_race_id']
try:
row_df['inspection_complete'] = j['inspection_complete']
except:
row_df['inspection_complete'] = None
try:
row_df['playoff_round'] = j['playoff_round']
except:
row_df['playoff_round'] = None
race_info_df = pd.concat([race_info_df,row_df],ignore_index=True)
del row_df
for k in j['results']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['series_id'] = race_level
row_df['race_season'] = race_season
row_df['result_id'] = k['result_id']
row_df['finishing_position'] = k['finishing_position']
row_df['starting_position'] = k['starting_position']
row_df['car_number'] = str(k['car_number'])
row_df['driver_fullname'] = k['driver_fullname']
try:
row_df['driver_hometown'] = k['driver_hometown']
except:
row_df['driver_hometown'] = None
row_df['hometown_city'] = k['hometown_city']
row_df['hometown_state'] = k['hometown_state']
try:
row_df['hometown_country'] = k['hometown_country']
except:
row_df['hometown_country'] = None
row_df['team_id'] = k['team_id']
row_df['team_name'] = k['team_name']
row_df['qualifying_order'] = k['qualifying_order']
row_df['qualifying_position'] = k['qualifying_position']
row_df['qualifying_speed'] = k['qualifying_speed']
row_df['laps_led'] = k['laps_led']
row_df['times_led'] = k['times_led']
row_df['car_make'] = k['car_make']
row_df['car_model'] = k['car_model']
row_df['sponsor'] = k['sponsor']
row_df['points_earned'] = k['points_earned']
try:
row_df['playoff_points_earned'] = k['playoff_points_earned']
except:
row_df['playoff_points_earned'] = None
row_df['laps_completed'] = k['laps_completed']
row_df['finishing_status'] = k['finishing_status']
row_df['winnings'] = k['winnings']
row_df['series_id'] = k['series_id']
row_df['race_season'] = k['race_season']
row_df['race_id'] = k['race_id']
row_df['owner_fullname'] = k['owner_fullname']
try:
row_df['crew_chief_id'] = k['crew_chief_id']
except:
row_df['crew_chief_id'] = None
row_df['crew_chief_fullname'] = k['crew_chief_fullname']
row_df['points_position'] = k['points_position']
row_df['points_delta'] = k['points_delta']
row_df['owner_id'] = k['owner_id']
row_df['official_car_number'] = str(k['official_car_number'])
try:
row_df['disqualified'] = k['disqualified']
except:
row_df['disqualified'] = None
try:
row_df['diff_laps'] = k['diff_laps']
except:
row_df['diff_laps'] = None
try:
row_df['diff_time'] = k['diff_time']
except:
row_df['diff_time'] = None
race_results_df = pd.concat(
[race_results_df,row_df],
ignore_index=True
)
del row_df
for k in j['caution_segments']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['start_lap'] = k['start_lap']
row_df['end_lap'] = k['end_lap']
row_df['reason'] = k['reason']
row_df['comment'] = k['comment']
row_df['beneficiary_car_number'] = str(k['beneficiary_car_number'])
row_df['flag_state'] = k['flag_state']
race_cautions_df = pd.concat(
[race_cautions_df,row_df],
ignore_index=True
)
del row_df
for k in j['race_leaders']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['start_lap'] = k['start_lap']
row_df['end_lap'] = k['end_lap']
row_df['car_number'] = str(k['car_number'])
race_leaders_df = pd.concat(
[race_leaders_df,row_df],
ignore_index=True
)
del row_df
if season >= 2020:
try:
for k in j['stage_results']:
stage_num = k['stage_number']
for d in k['results']:
row_df = pd.DataFrame(
columns=['race_id'],
data=[race_id])
row_df['stage_number'] = stage_num
row_df['driver_fullname'] = d['driver_fullname']
row_df['driver_id'] = d['driver_id']
row_df['car_number'] = str(d['car_number'])
row_df['finishing_position'] = d['finishing_position']
row_df['stage_points'] = d['stage_points']
race_stage_results_df = pd.concat(
[race_stage_results_df,row_df],
ignore_index=True
)
del row_df
except:
print('No Stage results found in this race.')
if season >= 2021:
for k in j['infractions']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['car_number'] = str(k['car_number'])
row_df['driver_fullname'] = k['driver_fullname']
row_df['driver_id'] = k['driver_id']
row_df['lap'] = k['lap']
row_df['lap_assessed'] = k['lap_assessed']
row_df['penalty'] = k['penalty']
row_df['notes'] = k['notes']
race_infractions_df = pd.concat([race_infractions_df,row_df],
ignore_index=True
)
del row_df
for k in j['pit_reports']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['infraction'] = k['infraction']
row_df['vehicle_number'] = str(k['vehicle_number'])
row_df['driver_name'] = k['driver_name']
row_df['vehicle_manufacturer'] = k['vehicle_manufacturer']
row_df['leader_lap'] = k['leader_lap']
row_df['lap_count'] = k['lap_count']
row_df['pit_in_flag_status'] = k['pit_in_flag_status']
row_df['pit_out_flag_status'] = k['pit_out_flag_status']
row_df['pit_in_race_time'] = k['pit_in_race_time']
row_df['pit_out_race_time'] = k['pit_out_race_time']
row_df['total_duration'] = k['total_duration']
row_df['box_stop_race_time'] = k['box_stop_race_time']
row_df['box_leave_race_time'] = k['box_leave_race_time']
row_df['pit_stop_duration'] = k['pit_stop_duration']
row_df['in_travel_duration'] = k['in_travel_duration']
row_df['out_travel_duration'] = k['out_travel_duration']
row_df['pit_stop_type'] = k['pit_stop_type']
row_df['left_front_tire_changed'] = k['left_front_tire_changed']
row_df['left_rear_tire_changed'] = k['left_rear_tire_changed']
row_df['right_front_tire_changed'] = k['right_front_tire_changed']
row_df['right_rear_tire_changed'] = k['right_rear_tire_changed']
row_df['previous_lap_time'] = k['previous_lap_time']
row_df['next_lap_time'] = k['next_lap_time']
race_pit_reports_df = pd.concat(
[race_pit_reports_df,row_df],
ignore_index=True
)
del row_df
return race_info_df, race_results_df, race_cautions_df, \
race_leaders_df, race_stage_results_df, race_infractions_df, \
race_pit_reports_df
def parse_weekend_runs(season: int):
weekend_runs_df = pd.DataFrame()
row_df = pd.DataFrame()
if season < 2018:
raise Exception("NASCAR API does not have live race data before 2018.")
elif season > datetime.now().year + 1:
raise Exception(
"You are attempting to get a race that does not exist right now.\nCheck your input for the season.")
schedule_df = parse_nascar_schedule(season, "all")
race_ids_list = schedule_df['race_id'].to_numpy()
race_levels_list = schedule_df['series_id'].to_numpy()
race_seasons_list = schedule_df['race_season'].to_numpy()
for i in tqdm(range(0,len(race_ids_list))):
row_df = pd.DataFrame()
race_id = int(race_ids_list[i])
race_level = int(race_levels_list[i])
race_season = int(race_seasons_list[i])
print(race_id)
url = f'https://cf.nascar.com/cacher/{race_season}/{race_level}/{race_id}/weekend-feed.json'
response = urlopen(url)
json_data = json.loads(response.read())
for j in json_data['weekend_runs']:
weekend_run_id = j['weekend_run_id']
timing_run_id = j['timing_run_id']
run_type = j['run_type']
run_name = j['run_name']
run_date = j['run_date']
try:
run_date_utc = j['run_date_utc']
except:
run_date_utc = None
for k in j['results']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['weekend_run_id'] = weekend_run_id
row_df['timing_run_id'] = timing_run_id
row_df['run_type'] = run_type
row_df['run_name'] = run_name
row_df['run_date'] = run_date
row_df['run_date_utc'] = run_date_utc
row_df['run_id'] = k['run_id']
row_df['car_number'] = str(k['car_number'])
try:
row_df['vehicle_number'] = str(k['vehicle_number'])
except:
row_df['vehicle_number'] = None
try:
row_df['manufacturer'] = k['manufacturer']
except:
row_df['manufacturer'] = None
row_df['driver_id'] = k['driver_id']
try:
row_df['driver_name'] = k['driver_name']
except:
row_df['driver_name'] = None
row_df['finishing_position'] = k['finishing_position']
row_df['best_lap_time'] = k['best_lap_time']
row_df['best_lap_speed'] = k['best_lap_speed']
row_df['best_lap_number'] = k['best_lap_number']
row_df['laps_completed'] = k['laps_completed']
row_df['comment'] = k['comment']
row_df['delta_leader'] = k['delta_leader']
try:
row_df['disqualified'] = k['disqualified']
except:
row_df['disqualified'] = None
weekend_runs_df = pd.concat(
[weekend_runs_df,row_df],
ignore_index=True
)
del row_df
return weekend_runs_df
def parse_live_points(season:int):
points_df = pd.DataFrame()
row_df = pd.DataFrame()
if season < 2019:
raise Exception("\nNASCAR API does not have live race data before 2018.")
elif season > datetime.now().year + 1:
raise Exception(
"You are attempting to get a race that does not exist right now.\nCheck your input for the season.")
schedule_df = parse_nascar_schedule(season, "all")
race_ids_list = schedule_df['race_id'].to_numpy()
race_levels_list = schedule_df['series_id'].to_numpy()
#race_seasons_list = schedule_df['race_season'].to_numpy()
for i in tqdm(range(0,len(race_ids_list))):
row_df = pd.DataFrame()
race_id = int(race_ids_list[i])
race_level = int(race_levels_list[i])
print(race_id)
url = f'https://cf.nascar.com/live/feeds/series_{race_level}/{race_id}/live_points.json'
try:
response = urlopen(url)
json_data = json.loads(response.read())
for j in json_data:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['series_id'] = race_level
row_df['run_id'] = j['run_id']
row_df['car_number'] = str(j['car_number'])
row_df['bonus_points'] = j['bonus_points']
row_df['delta_leader'] = j['delta_leader']
row_df['delta_next'] = j['delta_next']
row_df['first_name'] = j['first_name']
row_df['driver_id'] = j['driver_id']
row_df['is_in_chase'] = j['is_in_chase']
row_df['is_points_eligible'] = j['is_points_eligible']
row_df['is_rookie'] = j['is_rookie']
row_df['last_name'] = j['last_name']
row_df['membership_id'] = j['membership_id']
row_df['points'] = j['points']
row_df['points_position'] = j['points_position']
row_df['points_earned_this_race'] = j['points_earned_this_race']
row_df['stage_1_points'] = j['stage_1_points']
row_df['stage_1_winner'] = j['stage_1_winner']
row_df['stage_2_points'] = j['stage_2_points']
row_df['stage_2_winner'] = j['stage_2_winner']
row_df['stage_3_points'] = j['stage_3_points']
row_df['stage_3_winner'] = j['stage_3_winner']
row_df['wins'] = j['wins']
row_df['top_5'] = j['top_5']
row_df['top_10'] = j['top_10']
row_df['poles'] = j['poles']
points_df = pd.concat([points_df,row_df],ignore_index=True)
del row_df
except:
time.sleep(1)
return points_df
def parse_lap_times(race_id,race_level,race_season):
lap_times_df = pd.DataFrame()
row_df = pd.DataFrame()
url = f'https://cf.nascar.com/cacher/{race_season}/{race_level}/{race_id}/lap-times.json'
try:
response = urlopen(url)
json_data = json.loads(response.read())
except:
raise Exception(f"Could not get lap data for {race_id} in the {race_level} level's {race_season} season.")
for j in json_data['laps']:
driver_number = str(j['Number'])
driver_full_name = j['FullName']
manufacturer = j['Manufacturer']
running_position = j['RunningPos']
NASCAR_driver_id = j['NASCARDriverID']
for k in j['Laps']:
row_df = pd.DataFrame(columns=['race_id'], data=[race_id])
row_df['race_level'] = race_level
row_df['race_season'] = race_season
row_df['driver_number'] = driver_number
row_df['driver_full_name'] = driver_full_name
row_df['manufacturer'] = manufacturer
row_df['finishing_position'] = running_position
row_df['NASCAR_driver_id'] = NASCAR_driver_id
row_df['lap_num'] = k['Lap']
row_df['lap_time'] = k['LapTime']
row_df['lap_speed'] = k['LapSpeed']
row_df['lap_running_position'] = k['RunningPos']
lap_times_df = pd.concat(
[lap_times_df,row_df],
ignore_index=True
)
del row_df
return lap_times_df
def main():
#current_year = datetime.now().year
now = datetime.now()
current_year = now.year
current_month = now.month
current_day = now.day
for i in tqdm(range(current_year-1,current_year+1)):
df = parse_nascar_schedule(i, "all")
df = df.sort_values(by="date_scheduled")
df.to_csv(f"nascar_api/schedule/{i}_schedule.csv", index=False)
del df
#parse_basic_race_results(current_year)
for i in range(current_year-1,current_year+1):
print(f'\nGetting the NASCAR race info for the {i} season.')
info_df, results_df, cautions_df, leaders_df,\
stage_df,infractions_df, pitstops_df,\
= parse_basic_race_results(i)
info_df.to_csv(f"nascar_api/race_info/{i}_race_info.csv", index=False)
results_df.to_csv(f"nascar_api/race_results/{i}_race_results.csv", index=False)
cautions_df.to_csv(f"nascar_api/race_cautions/{i}_race_cautions.csv", index=False)
leaders_df.to_csv(f"nascar_api/race_leaders/{i}_race_leaders.csv", index=False)
stage_df.to_csv(f"nascar_api/race_stage_results/{i}_race_stage_results.csv", index=False)
infractions_df.to_csv(f"nascar_api/race_infractions/{i}_race_infractions.csv", index=False)
pitstops_df.to_csv(f"nascar_api/race_pit_stops/{i}_race_pit_stops.csv", index=False)
#weekend_runs_df.to_csv(f"nascar_api/weekend_runs/{i}_weekend_runs.csv", index=False)
for i in range(current_year-1,current_year+1):
print(f'\nGetting the NASCAR weekend runs for the {i} season.')
weekend_runs_df = parse_weekend_runs(i)
weekend_runs_df.to_csv(f"nascar_api/weekend_runs/{i}_weekend_runs.csv", index=False)
schedule_df = parse_nascar_schedule(i, "all")
race_ids_list = schedule_df['race_id'].to_numpy()
race_levels_list = schedule_df['series_id'].to_numpy()
race_seasons_list = schedule_df['race_season'].to_numpy()
for j in tqdm(range(0,len(race_ids_list))):
try:
race_df = parse_lap_times(race_ids_list[j],race_levels_list[j],race_seasons_list[j])
race_df.to_csv(f"nascar_api/lap_times/{race_seasons_list[j]}_{race_ids_list[j]}_lap_times.csv",index=False)
time.sleep(1)
except:
print('Couldn\'t parse the race. Breaking the loop.')
time.sleep(2)
#print(race_df)
with open('nascar_api_status.json','w+') as f:
f.write(f"{{ \"year\":{current_year},\"month\":{current_month},\"day\":{current_day} }}")
if __name__ == "__main__":
main()