-
Notifications
You must be signed in to change notification settings - Fork 2
/
norlig.m
45 lines (39 loc) · 1.79 KB
/
norlig.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function [normM] = norlig(Mat)
%NORLIG - (French) Norm of the rows of a matrix
% function [normM] = norlig(Mat)
% returns as a row vector
%<autobegin> ---------------------- 27-Jun-2005 10:45:19 -----------------------
% ------ Automatically Generated Comments Block Using AUTO_COMMENTS_PRE7 -------
%
% CATEGORY: Utility - General
%
% At Check-in: $Author: Mosher $ $Revision: 19 $ $Date: 6/27/05 9:00a $
%
% This software is part of BrainStorm Toolbox Version 27-June-2005
%
% Principal Investigators and Developers:
% ** Richard M. Leahy, PhD, Signal & Image Processing Institute,
% University of Southern California, Los Angeles, CA
% ** John C. Mosher, PhD, Biophysics Group,
% Los Alamos National Laboratory, Los Alamos, NM
% ** Sylvain Baillet, PhD, Cognitive Neuroscience & Brain Imaging Laboratory,
% CNRS, Hopital de la Salpetriere, Paris, France
%
% See BrainStorm website at http://neuroimage.usc.edu for further information.
%
% Copyright (c) 2005 BrainStorm by the University of Southern California
% This software distributed under the terms of the GNU General Public License
% as published by the Free Software Foundation. Further details on the GPL
% license can be found at http://www.gnu.org/copyleft/gpl.html .
%
% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE
% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY
% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY
% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.
%<autoend> ------------------------ 27-Jun-2005 10:45:19 -----------------------
% [normM] = norlig(Mat)
% norme est un vecteur
% qui contient les normes
% des lignes de la matrice Mat
normM = sqrt(sum(Mat.^2,2))';