From 79256b57fede7e993c485da2a2d465b573ef2338 Mon Sep 17 00:00:00 2001 From: Matt McCormick Date: Sun, 1 May 2022 23:06:52 -0400 Subject: [PATCH] WIP: ENH: Add ConvertPyImageJ example --- examples/ConvertPyImageJDataset.ipynb | 820 ++++++++++++++++++++++++++ 1 file changed, 820 insertions(+) create mode 100644 examples/ConvertPyImageJDataset.ipynb diff --git a/examples/ConvertPyImageJDataset.ipynb b/examples/ConvertPyImageJDataset.ipynb new file mode 100644 index 0000000..7deb7f3 --- /dev/null +++ b/examples/ConvertPyImageJDataset.ipynb @@ -0,0 +1,820 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "cffe4de0", + "metadata": {}, + "outputs": [], + "source": [ + "import sys, os\n", + "!conda install --yes --prefix {sys.prefix} -c conda-forge pyimagej openjdk=8\n", + "os.environ['JAVA_HOME'] = os.sep.join(sys.executable.split(os.sep)[:-2] + ['jre'])\n", + "!{sys.executable} -m pip install spatial-image-multiscale matplotlib zarr" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a3a9d3cf", + "metadata": {}, + "outputs": [], + "source": [ + "from spatial_image_multiscale import to_multiscale\n", + "from spatial_image import is_spatial_image, to_spatial_image\n", + "import imagej\n", + "import zarr\n", + "import numpy as np\n", + "from urllib.request import urlretrieve\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "edf6a61b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Failed to guess the Java version.\n", + "Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=gasp\n", + "WARNING: An illegal reflective access operation has occurred\n", + "WARNING: Illegal reflective access by net.imagej.patcher.LegacyInjector (file:/home/matt/.jgo/net.imagej/imagej/5f34b9963e566d47fe91383d53a5332bfc13df00c5d2f4bd13e2ea10b8f5fb2e/ij1-patcher-1.2.2.jar) to method java.lang.ClassLoader.findLoadedClass(java.lang.String)\n", + "WARNING: Please consider reporting this to the maintainers of net.imagej.patcher.LegacyInjector\n", + "WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations\n", + "WARNING: All illegal access operations will be denied in a future release\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ImageJ2 version: 2.5.0/1.53r\n" + ] + } + ], + "source": [ + "# initialize ImageJ2\n", + "ij = imagej.init('2.5.0')\n", + "print(f\"ImageJ2 version: {ij.getVersion()}\")" + ] + }, + { + "cell_type": "markdown", + "id": "88d3e9b6", + "metadata": {}, + "source": [ + "PyImageJ provides access to all the file formats supported by [Bio-Formats](https://www.openmicroscopy.org/bio-formats/) and [SCIFIO](https://scif.io/) through [Fiji](https://github.com/imagej/pyimagej/blob/master/doc/1-Starting-PyImageJ.ipynb).\n", + "\n", + "Note that command line conversion to OME-NGFF via Bio-Formats is also available through the [bioformats2raw](https://github.com/glencoesoftware/bioformats2raw) CLI." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "865974c8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[INFO] Populating metadata\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[java.lang.Enum.toString] [INFO] Populating metadata\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Download example image\n", + "image = ij.io().open('https://wsr.imagej.net/images/Cell_Colony.jpg')\n", + "type(image)" + ] + }, + { + "cell_type": "markdown", + "id": "4409c364", + "metadata": {}, + "source": [ + "Convert the image to an xarray [DataArray](https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html). For more information, see the [PyImageJ Working with Images tutorial](https://github.com/imagej/pyimagej/blob/master/doc/6-Working-with-Images.ipynb)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1dbf3114", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "array([[160, 185, 208, ..., 192, 184, 166],\n", + " [199, 215, 228, ..., 204, 196, 180],\n", + " [226, 232, 236, ..., 212, 206, 193],\n", + " ...,\n", + " [203, 212, 216, ..., 167, 147, 143],\n", + " [185, 198, 209, ..., 179, 163, 151],\n", + " [156, 172, 189, ..., 191, 180, 164]], dtype=uint8)\n", + "Coordinates:\n", + " * row (row) float64 0.0 1.0 2.0 3.0 4.0 ... 403.0 404.0 405.0 406.0 407.0\n", + " * col (col) float64 0.0 1.0 2.0 3.0 4.0 ... 401.0 402.0 403.0 404.0 405.0\n", + "Attributes:\n", + " rois: None\n", + " tables: None\n", + " scifio.metadata.image: io.scif.FieldPrinter@2785db06\\n\\t--class io.scif...\n", + " scifio.metadata.global: io.scif.filters.PlaneSeparatorMetadata@61ffd148\n" + ] + } + ], + "source": [ + "image_da = ij.py.from_java(image)\n", + "print(image_da)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2e9d1033", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "is_spatial_image(image_da)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "25360207", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray (y: 408, x: 406)>\n",
+       "array([[160, 185, 208, ..., 192, 184, 166],\n",
+       "       [199, 215, 228, ..., 204, 196, 180],\n",
+       "       [226, 232, 236, ..., 212, 206, 193],\n",
+       "       ...,\n",
+       "       [203, 212, 216, ..., 167, 147, 143],\n",
+       "       [185, 198, 209, ..., 179, 163, 151],\n",
+       "       [156, 172, 189, ..., 191, 180, 164]], dtype=uint8)\n",
+       "Coordinates:\n",
+       "  * y        (y) float64 0.0 1.0 2.0 3.0 4.0 ... 403.0 404.0 405.0 406.0 407.0\n",
+       "  * x        (x) float64 0.0 1.0 2.0 3.0 4.0 ... 401.0 402.0 403.0 404.0 405.0\n",
+       "Attributes:\n",
+       "    rois:                    None\n",
+       "    tables:                  None\n",
+       "    scifio.metadata.image:   io.scif.FieldPrinter@6eb089e6\\n\\t--class io.scif...\n",
+       "    scifio.metadata.global:  io.scif.filters.PlaneSeparatorMetadata@61ffd148
" + ], + "text/plain": [ + "\n", + "array([[160, 185, 208, ..., 192, 184, 166],\n", + " [199, 215, 228, ..., 204, 196, 180],\n", + " [226, 232, 236, ..., 212, 206, 193],\n", + " ...,\n", + " [203, 212, 216, ..., 167, 147, 143],\n", + " [185, 198, 209, ..., 179, 163, 151],\n", + " [156, 172, 189, ..., 191, 180, 164]], dtype=uint8)\n", + "Coordinates:\n", + " * y (y) float64 0.0 1.0 2.0 3.0 4.0 ... 403.0 404.0 405.0 406.0 407.0\n", + " * x (x) float64 0.0 1.0 2.0 3.0 4.0 ... 401.0 402.0 403.0 404.0 405.0\n", + "Attributes:\n", + " rois: None\n", + " tables: None\n", + " scifio.metadata.image: io.scif.FieldPrinter@58324c9f\\n\\t--class io.scif...\n", + " scifio.metadata.global: io.scif.filters.PlaneSeparatorMetadata@61ffd148" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Standard spatial_image dims\n", + "image_da = image_da.rename({'row':'y', 'col':'x'})\n", + "image_da" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "387c4b41", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "is_spatial_image(image_da)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9fab6106", + "metadata": {}, + "outputs": [], + "source": [ + "# The DataArray name needs to be set\n", + "image_da.name = image.getName()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "3dc8e79e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DataTree('multiscales', parent=None)\n", + "├── DataTree('scale0')\n", + "│ Dimensions: (y: 408, x: 406)\n", + "│ Coordinates:\n", + "│ * y (y) float64 0.0 1.0 2.0 3.0 4.0 ... 404.0 405.0 406.0 407.0\n", + "│ * x (x) float64 0.0 1.0 2.0 3.0 4.0 ... 402.0 403.0 404.0 405.0\n", + "│ Data variables:\n", + "│ Cell_Colony.jpg (y, x) uint8 dask.array\n", + "│ Attributes:\n", + "│ rois: None\n", + "│ tables: None\n", + "│ scifio.metadata.image: io.scif.FieldPrinter@11dcd42c\\n\\t--class io.scif...\n", + "│ scifio.metadata.global: io.scif.filters.PlaneSeparatorMetadata@61ffd148\n", + "├── DataTree('scale1')\n", + "│ Dimensions: (y: 204, x: 203)\n", + "│ Coordinates:\n", + "│ * y (y) float64 0.5 2.5 4.5 6.5 8.5 ... 400.5 402.5 404.5 406.5\n", + "│ * x (x) float64 0.5 2.5 4.5 6.5 8.5 ... 398.5 400.5 402.5 404.5\n", + "│ Data variables:\n", + "│ Cell_Colony.jpg (y, x) uint8 dask.array\n", + "│ Attributes:\n", + "│ rois: None\n", + "│ tables: None\n", + "│ scifio.metadata.image: io.scif.FieldPrinter@d13baac\\n\\t--class io.scif....\n", + "│ scifio.metadata.global: io.scif.filters.PlaneSeparatorMetadata@61ffd148\n", + "└── DataTree('scale2')\n", + " Dimensions: (y: 51, x: 50)\n", + " Coordinates:\n", + " * y (y) float64 3.5 11.5 19.5 27.5 ... 379.5 387.5 395.5 403.5\n", + " * x (x) float64 9.5 17.5 25.5 33.5 ... 377.5 385.5 393.5 401.5\n", + " Data variables:\n", + " Cell_Colony.jpg (y, x) uint8 dask.array\n", + " Attributes:\n", + " rois: None\n", + " tables: None\n", + " scifio.metadata.image: io.scif.FieldPrinter@4c302f38\\n\\t--class io.scif...\n", + " scifio.metadata.global: io.scif.filters.PlaneSeparatorMetadata@61ffd148\n" + ] + } + ], + "source": [ + "multiscale = to_multiscale(image_da, [2,4])\n", + "print(multiscale)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "3bc48977", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebBk2X3fiX3O3XPPfC/f/l7Vq72qq/e90ViIlQRBggQpUhots2lMT3jssT12WNL4D49jQhGaGFu2/5hwBCc8tkaWPKJISsNlCFIECBAAATR6rV6qq2t7tbyl3pp75s27HP9x7jk3s0FBILsgoak6ER3V+TLz5rnnnvNbv7/vT0gpeTAejAfjwXgwHozJYf2bnsCD8WA8GA/Gg/HjNx4ohwfjwXgwHowH4/vGA+XwYDwYD8aD8WB833igHB6MB+PBeDAejO8bD5TDg/FgPBgPxoPxfcP5Nz2BDzK8WkHOrfoAWCJFSoElFPpKAhYSgXotBISpQ5i6AJTtEbG0GSQegR0BYJNiCYlEqOuLGEH+OpI2sbQYJh4Ag76P24fsJakLlfKQoj1Wv4nEFqn5/uG4hARm3b76PAJbpIxTh+wjSCk4GJUQ2X2UvZBx4hCllrmPWa+PIxKzDqkURFI9yjB18KwYR6TmvU4cUHVGALgiQQhJItX17OxzNilJZitIBIm06MSB+Q3XSihYap3G0sEiNb/hiMTco/5NC0k8YXtY5Kg4W6Qk0iLN3hdIUgSDxCOV6jole4wtUvP8UiwcEtKJ35m8pszWRn9fIEmwzGfG0uFwWMRtqd9MfCjVhxSyZ69/p5f4xNlaJ9LCESk1d2iel0DSi9WeG8YuFS/Et2Lz7CbnJ5BYSAapZ9bFsxLz7ByREqYOkbTV76UWJSfEzp69RUokbfqJj5f9hisSLCHNfeXrnr92SMx+ENln9Uql0sIS+bmIpYUtpJkDUn1HZuvYjXzixKIajMzztklJEcTZd1yhnotNatYpxZp6bSGJsz3niFQ9r2xOsbToRb55dmVPrYH+vsyev95XAAmCKLXNfQDYQub7Xp/Z7FmGicPw2s6+lHKODzB+8pMleXCY/Ks/CLxyKfx9KeVPfZDf+zc5fuTKQQhhAy8Dm1LKnxFCzAD/BFgHNoBfllIeZZ/9O8DfBBLgP5VS/v4Puvbimst//huPAblQeKW7DsD2sMpHZm4QZAJt2T3iTjTDZtgA4EzhHhVryD+4+xFu3FH75Zcff2Xq+ktei6I1Nte2hOSdwTIbvVkA3rh8nMKmg9S73IJzn7zOLyyo64ykEgqeUAd7L64AULOVsClZIZG0mbF7DFIlcMbS5ssHj/BY9S6glJgrEjOHbhqw4LSp2wMABqnPSLr8d7deBODutXk++8wlXqheB6CVFEmlxShTig8VNkmkRWIUYMI4O+R7cdXce8kKuRU2AZhx+iQIvnzvIgB3juqcae7zwswNAFa9Q/qpb4Tg7rjKerBv7rubFPCtyChm34pIpaCdFAElhIt2yCDxjbJacNv0U98Irbo9oGiFbEUN83qUusYY0Ous7zOwIvbiCoGZQ8DNYZOvXD4PQGO2yy+vv8aC2zbr5IqE3aiKmwlv/dsNRynzXhIQSZsrvQUAvvvWKU6f3uHJmTvZnDsMUo92XABgc1hnPujyW28/CoAcODx18QbHi4fqvrF4rzPPyfKB2j4i5WRhjzQTogmCojXmcn+ZQmZwuCKh6fbMHC2RMkg9c5+uiBlMrFsiLQIrwsrWNUxdBqlH2c6NhTB12Y/KAMx7HcLUZSesAfDK/iq7B1VeOHmTBb8DwKLfNnPU69SOC+ZZ1OyhMQAAXCtmP6pwOC6Z7ywHLaNkW1GR650mZS8E4EJ1B2tCOYSpg2Ol1OwhYab0erGPY6V0MwOmEwUU7Ii6O8jWRdKNAzZ6MwBcubvAxl//P97iA479w4Tv/v7qD/VZd+l684P+3r/J8a/Dc/hfA5cBLXn+NvAVKeXfE0L87ez13xJCPAT8FeAisAz8oRDirJTyB6rpo1htuBP+Lq/0T5jDT9/h0Y9sctLfBWAnrnHc2+eMfw+AUeqyFTU4V9sljNUyvHG0gmcnPFzdAqBojZm1e4ykEjiJFKz4R7y8dwyAk6d3iE7YZlMDPFG/YwR9Nw1Ycw9pZUJwzukSiPygjlKXohVymJQpWuoa3aTMT8xcMdeLpE0gxqRCHbTAigisyPyGKxJaSZFPLr4HwNVyiwulbSMkl90jQCkBgH7qk0hhFFfVGlK0QiLpUMrmYJELaFBC7G44y81vq/ueeUvyxucCoxwiaVO1hlwdKqH59e3TfGE1Nt93M8E1eU+D1OO3Nh9Rz2avxmfOvcus2zdeVyAixsIxQrBuD9gYN5lzuuY+9PwBOmmBw7hMO1GCuWYPCURslGDT7WKLlLNP76g5pA6JtMyzqdsDWkmRFe/IKOJ2UjTPCmA/KrMzqnJ5T93n+sldHq1vcsxXwn0zbLAxmMW38/v1rZil+Zb6frvMW9tLOCvqmjPegLo3pOqoe2i4fWwk+hdTaRFJm2W/hZt5DkVrTC8J8DOjB+DOaIZFTwnumjPI7l/9ux3VIYWiHZrvl+2RUeSDxCdFUMvmEKUO3SRg1usB8ERzE6t5F9+KjMcLGAUIULZDynZorgkwSD2zB9NY4IrECOqKO+JEYZ8jqdb+3dY8vZHPfFE921ZU5CAsMuureyjYY0hhJ6lyprBrft+SkiR7VscKSuFqpWiTUnFGnK7sqTmeCNngfgxJItN/9cf+AowfqXIQQqwCXwD+LvCfZX/+OeAnsv//B8DXgL+V/f1/kFKGwE0hxDXgWeDbP+g3tAW0FTUIUweZqs1SWelQtkMjXNa9fSxSE8poJUUW3Dbb4xo7h0pveW8XSR7tca6iFEjd7uNOCBhwiFKH9araiDNen43+LG+9eRyA4+d2WHDbdFNlzSjhZBkrP8FiJF0VRiIXbK5IqFrqPlqiRNUaMmOrwzmQSgjqg2aJFBtJlN3HOFWH4UKgFFrT6eFbkbn2YVwmkg6jzOKKUoeiHWJn7ngHpXD6qWfWKhDRxD3Du8Nlfu/WBQr31N96q4JidZTPiZS9uMqSp5TBxxavczq4Zw7qKHUzBae+X7RCNsMGO3vKOg2KY94+XGIYOfy1Ey+reaUFSlZolMBm1CAQkfG+itbYrCfA1eECw8Tjj26fVmtbHPFLa68ZIXp9NM8wcVkL1LOr2KMppaWVRC8JjJCLpM0odZnJPIeiNebl75zF38/CI5/pMev2udxfBuC1gxUOXlpAR2iS9RFL59t8buldAN4sLdPwhriWDislnCvfMyEQG8lIOhNeQKLmaOdCT/0tYT/KvFBnwIrfMs9Oe2c6rNR0eoykwyBR65hmIUN9T/tJhWHiGsHv2yEk6l4BVv0j2kmBYeLSy65B4tNw+xxFJXPNMHWMpR9YEUfjopnz3UGdwI55ZuZWNkeHdlIw4bilUodxwTEhoa+8e47CuwHDJXVP86cPeHruDimCq8N5sw5lOzfKkizsFGZnq+iOGcSe+cxyoc39GCrE9W9H4fCP2nP4vwP/B6Ay8bcFKeU2gJRyWwgxn/19BfjOxOfuZn+bGkKIXwF+BaCxFExZlm4h4T9+5uuA2jyr3oERACPpMkoDYzEHVkTFGtJ0e6R7SpiPGykLtR5/snsCgEeKd6g6I3biOqAO3j++9jT9AyVIfu7J16i6I5yOEha3tmfZnq9zNlDWaSspYpMaAVaxRtikxkuIsti9K2IjBCNpsxdXTajHFtJY9JBZk1jGYlLxYsd8fpB6U4K9bg+4NFjjWl+Fzt7aWeK51Vs8VlGhEE/EdJLAeBagwhl3x7NG8YapQ/ewhH088ygu7vLE7KbxDLppQVnY2RzWgkO6SWByGLN2j7G0TdihmxYo2yGfP/8OoMJM37p3kpnicMpSj6RNL1HPpmyP2B7XjWXcSwJWvQNujZXnfjgucaxwyMUFtfYNb4ArEiOgNod1zpd3TEhPXz+3NKXxOgZZEul3bl3EFpKPrVzP16YRM6iq9T1T3cO1YraGyrjo/OEi61/vYvXUuu1+pMn11TnOVJS1u1xosx+W2RupEE4YOzzTvEUns8IvR4s8VbuNZU1bpjaSYjZvrbyOYrUHD6IS8153KpxmiZRRtm41Z4AtJWSCOExdAiua8rCK1tgoxIOoRDcOqGTPPpI2VzoL3OnUeG7xNgAFa8zN4RyFTIFE0qbmDPO1DusMU4/9UCmPV946ydyxI86U1Dq4VsIg8YyXeKJ0QJg63B3UASi9HbD47SHDeTWnLWbZrR7R9Pu8sr+m7tOJOV3dM0rNtRJ6sT+lMObdrlmn+zlSHngOH2gIIX4G2JVSviKE+Ikf5it/yt++T0VLKX8V+FWA1YdrcjazsLtpQMkKWXOVi++JhH7qc5iog1i0QkrWmLpQwuUwKdNNCyrpOK8O3vH5Qx5v3DUudjspEUxY4S0pmKv0WK23AFjy2jxU3KL0GbUh90ZlyvbIWKFh6nI5WuYoUq/PFXcoWSEu05GySDrci9U8B6mn8hyZYB2lKtyjhaa2CLU3cpiUmXF65je1kNCWYtsq0HR7dHwlDNJUULAjEzO2SOmmBRNWUb9hczucoZ/FhFeDI148f416lpg9V9whIU/+DxKXVe/A/Pa9uJblSbLfyBRHKvNH3HS7NF0VRtiPKnx+5R2WvNZEjqHPVtRgM6wD8PrRKicrBxzYSuCsBYccxmUqmcd1vrwNwEcaSpCn0mIkHeMhnS/vsOqp7+g5LTpto7hBKcVrgwXjbQwGPnI3IFxSa77st/nlJ15mmKjvLHodUmmZxGxxV2JvH5LOKFsoKgtaYQG3qp739rjGd147S+Wa+nzqwqufS3lsZtPMaTOssx4cmPm8P/+h1tszoc2yFzI72ze5td1xBcdKWfVUOLEdFzmISnxvX3m3Z2p7HCscmuvaIjXfBejGAZ4V001yMMJysU038s19747KvLaxhhcohfPRYzemcgS+FWMJSeKp5z137IjT9X2jgAIrwhWJUcKdOMAVKU6mFMO6pH0qIHOKEamk4oQMEwUAAKh6Iwp2ZM7qIPWoOiNzL6PU5SDKcxyu+IHR6R96SCTRg7DSBx4vAl8UQvw0EABVIcT/F7gnhFjKvIYlYDf7/F1gbeL7q8DWD/oBgeQf7TwHwGO1TR4r3jYCzhaSQERmU9wM5ylaY3Pw63afVFo03S5fOv8GoDbtvNthN1KW4ILbAjAWcGBF/OWVl028/6S/y1janCuqMNSL1avsx1VzSBIEV3oLXD1U1u3ssT4bSZNTgbplS0g8YbPotPnj9lkAulHAF5qXjDCYdzok0jKW/SD1CUR+mMfSyXIG6vNvd5dYKxxxubMIwFKhw/nyNhdKailnz/UoWmNj9d+LaiQILveXuT1Qyd6qO+LS7hKVQB3E0yu7fLzxnjncel20R3NHzrIXV7kxVN7Jb156AjeIOb+s1uUn596mZIXGGtXIKC2Alr0jAhHRSQtoZT9IfQaJzz978wkA5NDmkWe3+O6uEnLfGJ/i4twOj1SUYG04fbbHdZPQrtlDylZk1kUrV/1vICLuRDMmhANZ7sTJ0WY/ffZtbiw3DdKrEwc03IERvDpUp5FEnXVB4bFlnEGWLI5hEOVC6lqryeyrFqVt9fzCuk3JHXPMPzRzaCcF41kmWAaMoJP3yjO0+NmVNwGlcAIrMmGgea9LJG2ztr3E53+88ijWbWUcJI8LFvwOtq3WoR2XzHcBld8QiUkmh9Kh5g8Zll2D2rrda1B+uUCoUggMV1xsUhMmMmi0zBj45PJV+rFvzoU2Iq731Lm402kwW+zj2WrdShePCB8S9AfqnK3PH1KwIxwroVBRa1fQYUUT2pQcxUVzL0V7jCWkQdy1ozxH8kGGBJIHYaUPNqSUfwf4OwCZ5/C/l1L+dSHEfw38e8Dfy/79H7Ov/Bbwj4UQfx+VkD4DvPSDfsNCst1Xgnwu6HHcLxrBOZIu3STgt+4pNNPlm8tUZvr8L87+sfl+gkXJCllwVTKvbI8oWaGJ525FDdbcQ+NGulZMICJjtfczQd10OuaaC27bHIKiFfJTs29xoawOgSsSivbYHP52UiKwx/RTn0fLd81nbFKTgEwmLHzIlYFWgqAOm7bST5QOuN5rcu27Soi+uxSyuVbjbFUppBW/RdkeGQt6YzTLv7h5Ht6sULmtNv07D0uSWkIyM10Go+97K2owY/eMVZ5gUbGGvH6kUByz3/So3oI3/5qKCq4WW6z6R6x6yiK2hUruBxPQ2EAoD00rYouUoh3yyfMqOV9xRyx5bfxMgNy72+Q77zXYfFzlLU5X9/mja2eZm1HP4hfWXmeUOFN5FLW20uyPO6MZ3m4tAfDc7AZNt8d2WDNwyWOFQ1Zm83j+teE8TpLSzJLikbRxRcLjNfXsrM9J3n5skfCm2j/p3IhPzm6bUMfp+j7ferFO/6ZSssPVmIcL+d7xrYgyOSwZIJSWChNNCMFKhmADTEhoMidRnni/nRSw7ZR4VSm4hWKXMHXMnGxSKvbIhCIr1oh2UjTPJkwcAiuiZI9pukpxX6xv89uPzWMfqnkehkWWgjZJBhvVyl+HfNpJgTmvm8N8U7VnjkK1h4/aJXpDn3pZ7a/WToW19X0+tqIAD1qhF62xua+yHWYeR5JdUtBwBmbeSQbZ1fcZp7nn9UHHg5zDj278PeDXhBB/E7gN/BKAlPJtIcSvAe8AMfCf/KuQSg/Gg/FgPBj/OocEkn9LmKz/tSgHKeXXUKgkpJQHwKf/JZ/7uyhk0w81BJK/fEzVFCw6bQ6SMkVHWQoVMaKbFLjbVpYlY4t6YWTi5J5IKFkhB3HZhFhAWYP6dSQdummQo42kRStD0ajXgq6cfn8kXRPHVsnmhBMZnHYkPXpJYIqcanYeK57LvA8bORVf7qcegRWRZNdccQ95Z7RicOgNd8Axb99AVotZ+Gb0vPp8P/K4+SfHuHOhDsB/fP6b5j4Bvnb3NM1/XKR8/ZBwXoU/9p92eObCDS5WtrN5DqbWfc7pkkhh1iGSNjfDeW7cVtiCUzdC3IMBwU0Vd2idLXCxtGnuW93Hkamr0F5QIMZ5YlxY2EieqynrMZWCohXykTn1OkxsDl6bpxeq0MPreyvM/n7A3qPq9Ru1NT5av2qs8KIV8t5oET8LI4XSoeHm99Vw+4xSl29tnCDNLOC/dvF7NJy+CaddOljmyeYd492U7RHtpMAJX8ElrapkrXBEdNzO3lcFcvoZz7p9eqd93vQVuukzZ95jxusb6/coLhFJm0oWthtJl0HiM+P0TCJeP7crAwWnXfbbVOyRCZf2kkAhljKnr2YP+ezJKxyO1RpfPZpjudAx4beG2zceEGh0m81mVAdga1hj1u+zFhxNrNWAZ87e5HZHhSFXim0Visp+1LfirBAuzzEFVmRqKYr2mLII+eyCQnFt1evcHdS5sqv2jwgSmoWeqe3oJz53B3XutOpcaKpQ5UqhZXIUoM6eKxIDsS3aY2acvslZNf0e92v825Fx+JBXSEsEi47G0iec8XYM9HMzalCxh3zpxCUAouM25wtbJtHrihiXhMCKTKjBFiljaRvkkG9FCm8/Iayr1tC8LlljduLaFNIolZapreinfoaWypLIVn8KeVSyxpSyEJFG3Sy4bQIRGSHZkiXujWvm8PaSgH/83tOk76jQxdILW/zs0tggi3Rc/yfnFBLoG0enub0+4lhdKZ+74wZLXsvEpCtBSGfdJvHqHD6k1ubxR69yonRg4I7dNGB3XGXF1wpozKLTMkpwxlZFWWsrKmx04y/NU7o5w+i4OtyHYZGKNTQhP1fEtJKSCRfMOV3uRTWujhdYD/azv3WYcXrmO/3UwxbSwGV/fvUSN2abLGaFWdf7c3zrkzkorhMptJQWmt20QM0eGkFftkfU7CG/sPwaoBK3vcTn0ZUtDkZKSUapSqLrkN1nl94lRZicVNPpmbmDSrLXnIER4GHqYonUJM0Hqc9j9bs8UVdIMft9eRDfiigyNvUinbjA5qDGWumI4xkEN0VQtkdmTr3EJ7AiRrF6Fq4V00sCsx8CK2LZb1FyctBEJC0jRGvOUBVFZtcr2iFHcWmqyC3NBK++ZjsucqJ0wFO12+YzibRMKHQ/qkyFgLRieLutQngXqjuMLNfkBxwrYS7oUV5Rc2z6PZO/AKg4IzY7VbrvNejU1PN/uDKYUj6D1Juq8h8k3tQ17teQyAc5hw/DsEVKJYP49VOfCNvEZl2RULRCY9VpIa837EFcZtbpsRU1jHJYcFuk0uLXN58E4OnZ2zxTvmF+zxMJv3v0sLFozhR22RjNTs1p0W8b5aHgpjn+u5WoGgY950RaqigNy1ThFq2QUeriZhG1eaeToYfU76x6R4qmIQPZzBV6NJ2OsU61MNXW+PHiIaM1lwtVBfEMU4fL/SUuH6mEdW/k0396iCyNeHFRCa3z5W1SaXGYFRj+7t2L7O1Wac6pWPvPrL1FIPIkpi0ki06bX1hVgvZrwTlGFxyem90AlPWaYhlY8SD1KVqh8Ybm7A5fPbrAO0cLrB/fN5+pWCOjgEbSA5kX1BUteKJ82wiDZq3Hk8/cNtapjjVrZVC3B4Spa9ZZw1y1EDyISrxycIxHZzY5W1bKfclrcxiX8wKy7F8Nr9XX1gqo9L5cUMNRVrn2VotWSNEK2c9qNVyRcBiX2Mqs2wVPWfRf21K1GuOvNyltp7z7/BqffOZtdZ9+j62wztmSfp4uvhXRziCbtwYzHIQlU3K65LawJhBJq6UWZTvMczsTlcygCvlSKYwymfUtqs4IS6TmN1IENXto1rrp9hTsOMpoRRJXUZBMSJfDcYnru8oACuyIE6UDBqj1u9Frst2t8sxCrmwq9sgoj2vDeV5cuslGtcN6SRkgkbQ5iovmPDccpSwm0V3tuMC8pxFxZe7HkBKifzt0w4dbOUgpaCU5XK0/4e+VLFXopa22vbhCgmUO9u64QtkJ8UWcJ0qz4jJ9mG8NZjgV7BprXFu7esONpMNX757Fd5XA+uLqmxz39o3ACSaEhn4diMgIEFckBNYYV8bG2jyMVbX0ZH1GxRoafL5vRfzy2Ve5uqxc8KdrtxikPu1sHTSsVf9m0+0RlhwDG41Sh7ZVwNawwUt1vFAQPxEZnqGaPSRMVcIWYG+nRvmyR6uZYeEXS5zwYdbpZWurEFo6vHbzaIaCF9HM3p9xehlViGPuO8XKFVla5LnaDR6p3DWHeywdEoT5TMUZMpJ54n0kXVpJ0RQLtpMSM07PeG27cZVAjLkX17JnV2TZPZqoB/FZcY+4MlLW7KzbZ7XcYsVvGaG0H5dpOj2jJEHVDej7qtl9bo+b5tmpavaIkp1XmkeyYJTIjN1jf4Ki5DAu8c/fe5TkjtoPZ5+6zUdmb9AfKiFbOZA03moT1hu8fUop82fnb3E8ODAGjSsSXm6vM0rU2ja8IY9Ut0wYyhKSQewbq77p9bCENPxRYerSjgtsj9Q6pVLwWPWuMbL++OAUj85useIfGa+8aIdTCCdLpNgi5fZQ7Zfv3TnGR4/fMJZ7mDpc7zRJb6l1fEsuUVsfUcqMrGt7TYZHBYbNrB7IGTFIPAMB3xrUmAtUcWruQftZtbiaUygdRqlrzqquo9Ae8iQi7IMNMVVH9Bd5fKiVQ/y+YjAbCRNQxUmLqGiFvD1c5TfeUdBI90qB2vO7/PKxVw00tWSNsUmNxZtgZZhstckjWeTzjTfpZBvuMClzamZ/KvbpiQR9bAIR0U0LtLKDa5OSiJyywRKSKLaxSbk+UsJ+yWuTYE3F520heaigIJuKO8fjC00VLmslRYpWyO2xskZ1nYT+jYbTp2yPjABb8NoUkzKPNNRBvBss47WgVBqa6mH92dMZRPcnLnq8tbBEOUMKzXtdAiviIEM8LTrtLISm3v+rp17mMM7DRm7GeaSt1brdn6KuWPf2iaTDinvIy/2TAFztz/NY9Q7HPeVJkNUseJnCnRE96vbACPt2op7xJK3GVtQwVbxnCzuMpW2e9Ui6vDY4bgS9K2I+3niPXhLwVlbx/PWN0/zs6bdMKEuvo4FkSsVRpC1qRY0i6WYFZiqkNDS/uR9XVehIo9XiAunNEoV9tYcdSxHtvXjsJgDfOPcI9RsB/RXJC3MKETXr9vEnQqFFK+R8eccI0qozomKPzPtHcQnXiomyyuElr83GaJbvZXUSvq3i+5d3VSjrwryqbNcQ0Ceam1QcdY9a8HZ1XiMbR1GJmjM0dTBnFvbw7XgqrDMT9Lm9qO7bIYf/Ajy8uI23nNDMKDvCVKHMWtk9rZcPSKWYKnCrWcOMk0udNt+KKNsjM6+m21NIrexZ3TfPAUgfeA4//sMXebKvlZSwrekwUyotI5AA/vDuWWb+QG364m7E3WqTaM1mPRNAWrB8vKLgk2Npk2KZv885HUapa/IBc06XL82/lsfv7RGdJJgqKoIJ6gMrZitq8Pt7DwFwrnKPM4V7vDtc4o1DBfv8ifmrNJ2O2dSWSPFEYhRSyRqz5h4aGgmbFFtIY8n97s7DRIltQjz6M9qaHUlFk3GyoMJtz7z4LqPE4bnGhkk8V+yRuWeAT9Sv8FjljvG6XJEwSl2jwFoZ9FHDbbVC0lZ+JB0q1tDke2wktkgmnl0RV8REMoeevnT7GM0zPU56e2YerohNnL6VFjOG0TxePzknUB5LrqAS8zfQlB6R2R+VTPAvuG2iQva8TqQU7bGxFCcTt5ARKlpgO9Lcpz/BneWKhG6aC6iiFRJYkYERN5wBF164yTDLF5ws79OLfa53VPileh3igkM0G7MwwZ0UiMh4YarKXprkum8p6pNiZtBYGT9VJavVaCdFxYXkqf0Sxg6BHTNXUeG2s+VdXJGY65109mjH6vlO7vNR6powm17PucyjXvTbimE3W7cEixOlA5yTah0u7y3Qj33j7ZwoHUwntEXM9V6TQZx5XF5fVUAnvil608J+khSzaI8nikA9XCuhkcFpjyYK4j7oeOA5fAhGLC1jIWmMvBZqqbSo2ENjxfVlgcfntvjGORW7H826uMe7WCLlIKuijqTNWDomzj3ndIhSJw/xpC5Ve8ROloCs24qigSxfXbJCxlloAZR1qoR3nnMYpB67ffV7gR3hWzG//c4j+IUMbTKrqrp1uCSVLlWnjeuoOdStAa20aIScjczYO9VBfaSxRTsqGIXUSwJmnJ55f29c4bX2MZ6uKZ6bZ+s3jZDUh3MvrpBKy6C29Jr+1h1FlFd0I35xJectSqVgEPkTobESM06fxwoqhtxJ82pbUIermxSmqr5bSQlPxDxcUHmPf+eCw5KbJ71dEWNP0EBHUlFdF0UWG7d7dNMAjwznnoWt9LNI5DSN9CBVidxxJmS7SYAlJKPUNd7K7rhCL/YNwglrTCDGJoQXiWnsvCviLBfjmf2gjJScUXc/rph1c62YTzXfnVK6v735CFs7CgXUsODwgkt98dCET670FlgrHpnaHFC5Nz2To6ikcgqWZa7ZSwI244Z5nWBxobYzMe+Ex6pZkjzbT1EWCtNe0WZYN8WAeoQTtRcJmDk2nAGulRhB3Y0DHJHQ8JTCuTi/w0qhxc2+OouH4xIlJzSewVudZd66tYx1L/O4HiqxXO7wwswNE6KzhORwnHuny35b0Yhn4TIsGMQeUVbfoGs0PuhQRXAPlMOP/Zika9YuvB7vjFaopcM83i/GPFK5S/fjasPN+z1uDxr85p3H+evHVa3dV/bPU3QivthUVnc/9TOhk1VXWvDG4BhbGYz0ifJtFt02i3YLgDvRrCKhS1VcWdM/H8uEzaLT4igu8fNrKiQUWBEvt49TeLuANVa/8dvpw9TLQ760pqq2NR12PzsUXVGgkxZMQriUeQza5X+ouMUg9Yw31EqK1O3BhPfTZSnIobvL7pHxsLQgvTJa4iguGnSKJ2J6MmAUqe0yHKskqEbtvNtb5JXNNRZqynL8pdVXqFhDbkfq8K+4h4xSz9xDyRqz7B4ZgsKDuMz/tPsIgRPxU7NvAfBC6RpjaRvFOko9WknR3Mc3js7waGWTc4GC2x4k5SmaEeVFpGaPBFY0xUEVWBFvD1aM0Fhw21mew6KTPe/14IBuEph8TSDGDAwCTSmoSUFhYTGSnhFgYeoqTzb7yCD1SaRlrNiG22fG7hkhm0iL1UqL1YraT3cX66xWWqwVjkz4pGBH30fBbYnUQJvvDBs8Wt00ijqVFjV7yM2B8kZSBC9tHmO4owwUf37Ap9ffM3MapB67o4qhjHdFQjspUHVG5ll0E1V8tj3WKK0eYeqYOR7FRTpxMOXFTcKGy3ZImDqGDM8mpeqMuDfOCDCzkFNDAe6Irze5dHGGxjMDQ8736u4Kh5t1mqtqrdyFlEW/be77ZneWU+V9E9q6n2GlaCJc/Rd5fKiVQyxtI/xbSZFWUjLC49c2nuJE/YCfaSohO0h9ZuzeFPfO261F7u3VGKypw3y+co+yHZpwSMUeshdXjUW9FdX59RuP07uXIWKeCZlxetzJhOCb/VXuhVXDe//bVx/mybW7zGdVu91UctzbN6GJbhowTm2kgMK+Okjh1TJ7xx1DJJJIwZ14xnAlrXoHeCI2SkFZq6lJxtftmEWnlSu07DOJzMgFpcO54o6xVkepy0h6VK2hsdKXvSNqzsBwSoGiCvn3T393av11KOtY4ZCZE31TERtJm/24apTLQVw2CCVQlpfmvAKlLDT997KjqSncqe+4IqZuD0zo6sX6deacjhHUs3aPnbhmnt1xb4+duG6ExV5cnYJ4RtKmbOfKpGiFWGmKJ3Lv8/pojmP+4UTdiTdlkCRSGEtbj0CM8ey8j0UgItODQiPRAkcp4QWnndG1awU/pFjP999TNWFgpHoOj1fuTP2eTpbrvNej1U3jLYAK8dmkBuf/G5cfZ/E3fFa21Dpsf6zC7fkGT9WVAvz6vdPsvDvP4Al1Jh6r36VmD6dICnXvjf0wf4aT66Tna+g0SJUHlr3WQBAddvKtiF4SmNBXvTygt+rz3hOq4r7xloUsJDgiZTsjOTzaaICXslDW1erWFDJsudAxTbnu55CIqVD1X+TxoVYOnojZydAoJ71d3hmtmAf3wuJNVvwWt7P6AU15oA9iKgW/sPw63YW8BP/x0q2pGoMERfGg3ePdcZXebgm7l1E2W4rW4OWuYnH98teexGsJRucyDqEdn61GDW9WHQoVK7ZNGKtkhTxTv8XRp4vc3FTz/OyFyyz7bWMRXw0XjGIAhdcvWWEeB88SwVpJdpMCqchhozo+reP9806HnaiWs5EKSS8O8DLhCwrpM2v3zFrqa+lwS4ISirqZz4Lbpm73TYJ6JD2uj+bNun67e4pLe0v8r858Tf0mMlNYeTOYC8EmkXTYS3I0j7pWFkPOBLYOt806vSxMp/5etwfMOR0Tzx9JF8+EedS6TRY7ahoUrQi2ooZpivTlbZUTGsUO/nJsuLBUU508oezZik13UlTci2um54QlUu5EM2bPRdKh5gzMuoykRyotigYNp6CZocxzM64VMWP3DJtwJG2SrEEUwEbapB/7XChtm2czSHzTkAjgidptk9+ZqfUZzBdwe2pde6ci5vyeEdR7RxWssaDsaqWcGOJETSuiPZ3zZRWa6iaBonDJrmGhcmDak7g+mON2r8HJikIF+lZs8hOgQp++iInQubmE4+VDeFi9f3e1zufXlFG3lNGNpA/fYb18aObkZGEsrYBqzhALOUWncb/GJIHkX+TxoVYOky0CI2lTybiRAOyiglYa0rxMMNsi9zQq9nCqSnkvrrLiHjHKNpJGt2hrdcU/4qmHbnK3WwcgTi1uj5t8e0fxGBV3BOGMZDlr7rJ++pAX6tcNnDawxtwaLRu45Sh1ebhwh/LyiHAxb84zWYhnZ61Gdb2GRv5oCO98Zj3rz2tLWOdiSlbISLrGIt+I5qjYI5OzGKQ+C67C8+v4e9UamnAUkIWd8srtsbQJMqGlxyj1Jmi/x5wKdtkcK4v5KCzyE8vXjOBeDHQTITX6qY+XWZsafXaYlNke1819L7tHU5xDkXSm6NBvR7PM2nluRX9Wz2nNPWAnrrPotMz7OicEmIT9q73jbL+hYKNJKYXlvJPfAEV6p3MO7aRANwlMs59UWoSpa4riEmlRsUeGTHCS9VY/G5W4z/s5pNLKC9jEWCW0hZziJ54svFvxj+g5gUkWuyLh9nCG1/7gAgDhXMLai0dmjz8xd5drvxjSGanPf6q5RdPvGWVyenGPhRNd5v2uuV4vCdgJa6ZXwo3uLHOFHg9XFJljYOmzle09keJaCe/21Dp+642zlK87DD6tntXHF69TnPDQE2nRTgomfJdKVVvxWEMh9C7WtrOCxhyAshocGWQeqHDZJJRVE/Hd7/Eg5/AhGRJhaCd24jpzdk4LYLlKcHSyhLTuEz1J+QDw5iAngj1TuGesN1CMpVcGC8YquzOa4dK3zhDsqc3x1Y87fHH9TeJEXat7Kua5x67xYl1ZOZZImbV7BNkG7qc+p/0dY8UXrZBARKy5B1PFU5Nopxmnx4JITD5F1TCMCcipiccTidFB6jMgZ74c2S6uiBlL3fGsT90asJUlKHWeYc7p5LTf0mXRbRul2E0L1K2B8XiqGSrrMFWvNXto3VZhpboVshPnLr1nx8y6faMUO6myNHVobJS6ptOdFuabYYNWVDQMqAo15uFl9zqSbkbYp64xa/ewRcq8k1uk/dQ3eQ3dM0GH2/qpr/ZCZlC2kiK74yxH9KQSSnOFHgtux4AatPDWoZym28W3cubfP26d4uW7a3xi/RqgkqR3x42JJGpKlDrGwt5MGtScYV55nBTYCuuczrqdhUI9u24SGA/JEil3x7k3Qoag0vTXFXeEb8eMlrM9lAiGiWuUbMNRVBiGmC8ucK0/x82WCo0+PrfJicK+meNkSEsbHjVvyIyXV4JbSHQfaVDCPkptXr6rztbyVwXF7QHXzqs9dzhTIk4tylmhnS4W1HDbUDrUnLzIzrdiypaqrZjsQDfZm+MoLmYw46zDXeqZ4jzAtCT94EPcVy/kx3l8qJVDSl4EN2d3GEk3F5rS5da4ybWBqh/4dF1lt8ZmQ6cMUp/fvvYw43tKKH7pI9/jyfKtKUvPt2IT1vGtmKieIDP3dylQlt+pmayqt9rhp2cvmUScRqtoqz4QEWnGYApKoXXTAotOy8Tgb4SzpqYBwLYUY2Y6EbyoWEMj5GyRYIt0CnpqTdAI9FOf/ahpDm7NHnKPeh52slVM/FywNRVLVV5TMft/BUXNW2r2KVljI7BWMl4n631IoleOFJb+QnXH9K4GpQD20qr5PsDNqMaM02ctK0h8qrTBQVI2z2IsbWadngld3QqbdOKAc0UV2qgKhSLTirVuD0xRGuRst8WJHJVGKAFc7i/xtZtnWJ1t8cn598xa+VY0ldc6iku80sp6KTghz9ZvmjDLjNenUswt4k4cTCF83u0t8freMtWMCv1ifYf1YN803oHcgwFlGHSTgJF0DcLp6nBBKbCsqKuYJeFNiE4klOyQzz2hEvvtSHVcm6T8dkViFJYO/Tw5r9BKy35bWf4ip53fHVdoRQU2+zUzt7kg9xoX3DbtpEiYXbPh9LkbNvA8tceckSSqulSbWU2JpWoY9Nr3Yp+Gmyubmj3kXlSdaF2a98OepAUH2I3yavPdUYUzWXW7KxXPkr6G874GSn/eoTrBPVAOP/ZjnPW7BYzA1VWc6m+jnJPmfdp+1umRxhb18pCDm0rgdOICe3HFhD+6ScDl9iLzGW3EvNfh55551dD/rgWHRKnDF+dV0nssHeadrgl1BCLCsvLQRyQdg9jRc/YyLLwO0RSD8H1cTiM2xk1zkOp2n624kUNT4yqX+8t8tKoEWl8qi1gLtH9493luXFvEranXP3fuEo+XbpvwzTc7Z/lo9T26SSFfw4n+1PrfyQSyJsybjOeqsJ72bjxKVshn5i4DKiRUFKHxNPqpx7dbp7i0q6qTTzYOeWd7gZPzB/zUgqKJmHO6VCaS5EURkkjL/Obl3iKdca4cOpkQ1bTRrkjoJsH39ZDQ9zFrK+oUbQ3vjcrYtgqHzGcw0TB1SaUwe+z17jHaUcBCoPbDQVg04TtQzX9eXLphwkQnC3sMUs8oj3db8wy/26R9Qa3TkzN32I8q3Moq0deCoynIZT/1sYSkbg1MyM9muvbCJe8DDYo7S4d/AN7cWWI8Z7PtKMHuWzEnivuGRmRj1OTR6qbxRCyRMkh8sy4Va0Q3DrjdbbDzqgoT2aGg8snQnC0Nzy2b6mSfujPg7KzyVt58vo4VCo5X1boOE5eKM6KRVXG7VkyYunkuJnVpul3jSZRd3ZHQNUohkja+iM01bg9nGMQeW6M6oPpO+1ZschIG4voBh5Ri6nz+RR4fauXwYDwYD8aD8a97pA9yDj/+oxMHBhmiMefa6j2My1NJTB2i0K8TqWLFX1x9k6szKvTkWzH/8MazeI6yYH525S2OlY5yArCshaSfFaSteockUkxxDE2Fd0SKLYQJdb02WKeX+Hwsq8D2RIKFQjxNJlJdERvLXxPzLTu6UU6aEbxlhVjSZtlvmXzAKW+XfuobL+CRxhaHS3k+o5/4dJOAP9hXiJz9YZmnKzdN8lnP2xNJzgybFPlG6yx7GXSx7IQ8Xbtl5gwqjKNDPp5IsCa68EXSISKvLr41bvKtS2cRiTpkb9wrs/yHFjeeOEb7CzfN9UapazwmVyYmCQ3wVO0WFWtk4LYHSZk5p2us/G93TjPndQ3JnZ91S9NhqgSL7XHNdCP7+OxVnmtsEEk7b2eZ0WHoUXIUBffxggojuuVkKiR0wt+j5gxMsygVA8+r1z+xcI0/+XjKmZqyqHuJz+XOIu+9rAAN6dyY/+jJb35fTFtzU4GqvYikndNXWCpGf7Wn9vBLG+ucWNxntdQCYLY8YLnQMWEpHTrU3x+nDi8fHWe9fJBdf99Ui4M6R+dLOwwTl821upqnJTlZ3jdWfMVSHEamv7eGgmeIp4Wnd1gsdbh6oDoFDiKPzy1dNgljHdrSI0pt/InnUEE1L7KQptAukjbYeW4tTB3a44A3bij462Mn7/JQddt04Zuss/ggQ06s4V/08aFWDoCBsq64R9wK500S61p/jk/MRIY19WRhj7o9MNW6UdZ97KHCJstZ0nNr3ODw7mOmaClatjlbumcEzkZ/hmOlI14sXwXynIJGI91IFlh2jqYSyjvjmslBFO3QHChgSpHocEc/Ve0UAzent55MFutezzqZu+7tm450kCNidCL2Y5X3OHbq0MA4uxm9x2JBKdVHalvmHvSmjzISM01ad2vY5BtffYTZN9V93Fyz2PvJMp+YU+vQdLr0hW+UZCQdQ/eh1mlMKymZUBYATkp5UYU24thm9+kK/pmOCQO5IsGycjbRQESmqhlyWK0eK+4RraTIK911AL72tUeJawmPXVCV4E/U77DstkxIYCQ9Dsclbh6p/fFcY4PtcY12VOCh8pZZ6+IEYeD5wraiAsnCZ6PU5U40w6LfNmsfSZvvHqo5RKnNMzO3mM+oL5a8Np9bvEyYXe/37j7EYatM4Z5al17J5iAqcaZwL5tjTmut90rFHioG4iQPbfRin++8otrMymJCzRuylM3p/PIOt0azDDNBu+y3qNlDE5bqRAHdyJ8KZ6l6gXyfvtdfwBEpP39BhU8TLJpub4oBuWKP2Awb5jtlO2Qmq3tZmm/TiQts+Wo/uXbCVlg3dQ2gKNc18ePxwsFUSFDXWPgixrWUgeGjqFTaWe5tozPD5kaT0oZa272lEvf8HBYd3bdQ0IOE9IdiBHZsLMm3hqv89+88CzeVpSBO9vlY4xqfqKqGIiPpGisdVM6hmxRIECaRuuwd8bPPvGasjAW3zSD1+d0dBbi+c32OgxNFHi8rWgidLNQbb9k9Us1+kjznEEwkNHVPA51MDqwxe3GVohWyl1mba+4hraQ41fjeRpokmKaFNu9LpsjdtPDoZqgOVyQsu7nCsknppAVaWUV2PcPdJwjjKZREyI1wnn96S1GXN4t9pAOl7axYayPhXrjGP/poHYCfPvk2n6q9Y7wZzfeklYErFKeUtrJ3whpfeOxNQws94/Q5PKUoNybbepbskN3M8vfsRM07U34zjmpTqj2mY+4BFWtkEpapL3FaNm/dVSR649RmYaFt1sETMY9X7nC+rJBoR1GJN4+W8e2YF2pK+I+lQz/OvTANjdbGgiUks27fCHCblBujOa5+T3kCSSHl4ke2jXe7FdVxrZibfeWtHL7TpHxH0F9WSvepR25QdXKacl2H4WVkiwA9GUzF93ejKmUnZPms8kaahT4Xq9uG8sMSKWHiGL6mhYXOlLezFLRVi89M4KXv+zeU6ru3ry5w4pxaq6dnbxNJ25AWRtLmMC4ZgkJLpPSSwCSBTU/uZZVPOohKVJ2Rseq/de8kO28uYK0pZfKZUwkLXscgk/bHZWbcPq6bmByCLVK6SWDWfrncZrdWYbCi9tyCEzNMXMZZflArng86HiSkPyTDtyJzkO6MGrhvlKndVBty+NDYuNKgrLxDWTbWLTBRzJQnwp4s3zLKIsWimwasllsAWKclz81tGMjmYVzmH954lkJG2f0Lq6/zcHDHCH+NRNKWp0YWaaSQjTSMpuf8bTOvBGsqge5ZOUfQQVLOGGgz9lkr4jApG+9FVyNfGajk4bniDgtZZzHIi8qeravwzaLTNn/TnFGWkAxSj/09ZXntjRqsPbbD3pZKIK/8zjarv3lA544iC/zur6wbIj91XynbUZ2zwY5Zh+ujualEbdnOQ0Ij6bLqHVK3+ybB20qKXB/PTyGFwtSllq19Ki1K9pCqzK8RSZtnKwpG7HwsMXMB+N7+cW6Hs5wvbJk5HcYl48kV7TGfnH/PVOuqdUgpWmPzPHWx4aRnuOwdmWRxLwlouAMaF5VX0yz2OeYfcitUgvm4v8/d8QwznrqH2vkDjooNaqtKqC4X2hTt0IR89mSFNfeQkcyTtftx0Rg4ek4ALy6oCvOm22WQ5BTd7/SWeftgkWPVvJPbUVTk926qsGKz0uej89dNSGiQ+FNW9t64wq07TWpXbMJT6j51EyhNn1G2VfdBrXQ0e61+3rvjCotex3hMmirD0cWmUlDcESRHStFvLdUo2WFOxxEWKdgRVTkyYaWm2zP9s/XaDZY8rlpzZu4Vd2SUglZc92MkD4rgPtgQQgTAHwN+9ju/LqX8Pwkh/gvgfwZoafKfSyn/p+w7fwf4m6j6qP9USvn7P+g3otThza6KMVpCMro4ZLiiNssXV68RiPGUcNEhGcigjVnj9rxi1eV39h7luYYSnMe9fY57IcvNFgCVeQUhzek1RgxGPoe7SogOlj26acHUNZBOh4700ML48miFp4s3SAiIss8lWNTtPqNs0+/FFW4PZk2hle6OpsNpFTlkxu4Zqz+wxqSxxYWSEoJr7oHKx2RzfrO/yjPlm6awyxXKIj8cl3m7p6zskhMy6/Y5vqKEXM0bsV4+4LeeUGGD8esN/I19dM/29qCAKxITzweleLVg7qQFHipuTRV/uROsrJZMsZFsjOfM89Kss3kLVoEl0inakMkxqdgAHi/dpp/6hv/Jd+IptNLX9s9xq9WgksFKLzR2OF3cpWKNTCc2x0q5UMjnnUpBJPOGUnr+BhZqhQxSjy+uvQloio6R+fzd8cwU4urJ+U2Y3+QgVHtyPywzTDxWs5acFXvEXlxlNFH8993DdQ6HRZ5f2MjvfVQ1vRE0IZ/e08cKh/RrHo9nXEmBFdGJA8Zjdc2dowrRXJ7D0Myner8seB3WVg8YLTo82VRw10nlBMqKV5XZ082PLneUgeJkPVDySnGbE4U9w+f0zNxt/uijPvKVOgBv3V1m9lQfy1fP8rH6XcWyKhIDTR2lrurpMJGvcERKNMzI/kLf0LkAUz05PsiQiKlizL/I40d5lyHwKSllTwjhAt8UQvxe9t7/TUr5f5n8sBDiIeCvABeBZeAPhRBnpZQJ/5LhWgkXs/jwKHX5lcd2zXuaw2gnrgPw9nCVfbfDaT9no5y1e3SFKvAC2ElqnCgdEEx0LJtzOtgoqzxBcMrdNQyXM1aP//DCn5g6iAvB1lTNgW5wo61+ULUAWpBvj2vccWcZS8cI66IVshdXuRkqCyhKbS61V3hdKiW4VjoyfYMBzng7tNI84ayaA42maCQmG+2sBweMpGugs1pRvdw+zr2hEsgfnbtO0+3y8XlVzLXiHbExauJlzLGDxRKDxWV2v6jm8Msn3mSQetRtZVGl0uLNwZqhnQisiIo1MgJfNzSafA4HSVlx+GfK+85ohoIdGYFSmlA2oCz/RAqTz9ECN4ffxoYiA2B+qUPdHpiQUHscIH6vQdtXc97+hSGni7tYQpq+Fvq5TSbr+6lvXl8LF9gK61wsqbqUQeoz73aMoNWswLoa/WY4x0v7xznoq3ss+WNsIbl3SSmjZCHkpx96m7sjtb8skfJEWYVwtFV+eWMJe99jK/MENns1tjaaJrcSlVT1uvZ+avaQ5+s3jYIbpB6LfpufO3fJ3FPRHuccU/Z4qkdFmDq8MH+Tpts1Xl3uIYTZ81SC1wj/rB/DuYrKnSRYWBMV9t0kUIVvdtb8yUpYqbW5ZdUB8C4XuLdSYbWg62ckNWc4RZnuWhGDNG8I5IqEojPm0xdUGLnuDhiknoG63i+E0YOE9H0YUkoJaFPSzf77QW0yfg74H6SUIXBTCHENeBb49r/sCyKrzARoeqpVZjpBfTEZt78zaLBUbxkStEeCO+zEdQJrbISrRcpTpQ3DyrnotEkQJom96LTZSWomrHSQlDnj38upLkTKot3mdqxw66NU4f21IDxMyhn1hfq9x0u3cUVCP/XNgduPllXsOmPRfLiyxTONW4ax8nBc5InybZazwjPNRzNZS7EVV8z7gYhMXQLAmnfATlRjZOWfr9t9XmxcI6xlxVwZxfdkaKvp9vjZ06qw6nd+8WEsK+VLJ1Rh4ZLXNr8H0EoLDBOP7axJ/cVCbrUCXOqrytlP19T3dT+H7fGCaTJzuz/Dueq9iefpMEh9DpJMGYixaqw0UdRYssYmEZ9IQckaGwv4/S08F4pdduYFmR6gO9ZU72JKGYwnlLslUqpWavbHUVRkmLi83Vfhta1BjU833zUJa0X/njO3hqnDrcuLFLcyGpIjSfuMpKocVY5mLGa9nrHAD8clRtKlbI/MNV48d53BKZcTWbvMS1vLVC87vNdUxsTHZxVIYLJdZs0eGNSWDsXo4rzJMJYe+1HFKKjvbB3nk2tXcb28UnqyCxyoMJOmCoHck5okYizaofl+Ii32o8pUiGil2Oa9U+r7fjFipdgy66AFfDf1zB6KEps4tdgaKo/x0uYynpfwzHLeanTe7Zpzdb/4kCTiQVjpfgwhhA28ApwG/hsp5XeFEJ8H/pdCiH8XeBn430kpj4AV4DsTX7+b/e391/wV4FcAGsu+scr6qc+9cY0FR8UWv9E+x43uLL+0/AoALzause7tsTFWh+hONGsOkM4xBCLFs/OmI7pNpW0pgXSYlKc6zOneCjoU4oqY98YLbGcKSBcaGaSJNcS146mY9Z3xLF/ZP88b15XAdPZdpCVhWR2U4xcOOeYfmLnWncEURDclNcydAHVbkc9pS7CVFBlnXdYAroaL9JLAcPPMOH0W3NZU7kEl0se5tRl71OwBjxRVWKF5vkfZHhnr1LciumlgvJEV9xCvEhuhOkh9Fp228RyOBwdT+SBLpNwaN7ncW+Steyqv0T8oEjwUGdqHQerx29uPsF5R93GmuKsKpbI53hjOsei3OeMra7WTBHTTwORibFIsKzWJ++PFQ+5+ZIeDrrJ6l4odKtZIKcWJ6vJK1icEVFI7xcot5yyhrkNZs34fV8QTleI2gYhz2glnyImHtrnhqXCLiB2SmYjxSaVMTtdUMym9zt1AhTAV4Z/yLJ+ubUwp7aVGh42HA0431L7fDOs4VmrCS0VrTDspTkBZxZQFHqUq5KipKPZTB9eK6Gf0J2mq+jJPFqkxgWTSo2yPOMo8CE0pYuaZqlyGzjnoRLa25rfHNbaHVY4vK4X3QvMmCRa3BsrI2qTOufK9KboMbRRduqtExNw/K9BbsRj+JW30qB7TWrGE9zEU9CAhfR9GFhJ6XAhRB/6ZEOJh4P8J/JcoL+K/BP6vwH8If6rf932ehpTyV4FfBVh/uCy1Fa8F8N2xgiZu9Ga416nQXlDWYs0eEEmHNVdtQN2bOcUyG02zha67eXJVJYAzKgFp4VrxlKdQtUYm/n2QlGknJf77954FYK3R4snGnam46IVgy3y+mxbYHtd4471jlK+qTe0MoPFexOG5LLxyXFW8fndXIWBO1Q5ouosGrVK1hlkDefUbrbTImneQt8u0R4xiz+QwAIMZhxzi100DTnoqDLQxbuKK2CheHfbS4bALweYUJfj3Oid4tHw3DxXJrFucadSTGIEJsJR5GbpaPLAilt0WadViMVBC7cZsk6dqt6aIEz+9cMVYrYqXakyaVcRrK3SyerVohcaTKFohpYk8x0i6PDe3wWKWDA5EzJzT5SApGytT749Bhj57fzih4fSZdztGaIa++31oNddKTN6jZg+5ULtHa0XNqVsPoOexPqMU3sXaNif8PSN8Umkx53S4NW6y6qnPqF7owoR4Pj5/jUcaW1zKOgn+5utP8sy5m1SqOSTYFYnZL5oMURs4R7FKok/OcZB6PFFTFvhDle2MfjtvTeqLdIrCO0od9hPfeAyJtAhTxySBXTthJB1c1L6/Hc5Qcyb6oouYcdmhE2XPyh5zfTDHS9fWAVhdPOLhigrZ6t/wrVihnW6pc1LYDWmdChgneX4olA7XB8oYrN+vOgd5fxlef5zHv5bMipSyJYT4GvBTk7kGIcR/C/xO9vIuposBAKvA1g+67l5Y4WqorLB1b59AjPlW5wwA1zYWOHciRwCte/tsjJs8EmRWWVrgpcEpavaQ41kryhXniI70jVDrpgXG0uZrLcVweaKwx5o7LXxcERkIp5dBQtcaLQCq3oiyHRr+l3fbC5xeuWe+H4iIptvjuYeuMz6nrvvaOyewhy6dc1lbS2/Aq/trHL2k4tJXnrIp2BFPVTYAlewdpJ45uHNOh8AaGaLB3bhCKoURxF/dP0/RGdPMEDNvHS3xucXLPFTYNFZ1mjX+0QJdh2SsDJqYZK0vdfhlzutSsYdTnsJk46VuWqCV5lw6XtaNTOdFDhPBSW+XJffI1C+cL2ybNQZoJyWKVo5Aq9sD9uKqCeGcLu4ySHzzLOp233SXmxza41p2jzJYsW59OaSfeiZkCHluxDQMEiqR/n6aET3mnA5jaRua+G+2T/Nk7Y4RzGHqMuv1+Myqojq5NZjhpWvrbHfV/vhU8wrdNOd7ShCMpMthXOJWVq9zIkOFaW+k6fRwRcJiSSnVu0GDQewZAeZnjYGMUM1a6+rcy2FUMv0VAPbjsqLczvIJWoAnCBPaGmTNfrQ3U3TG9JKA11rq+N4blDlezRsUmX4VmRc3sKfpWRJLsOofEXl5PwgLyfJCC4DHZ+9ii5TDuGSYW8PUZdHvMJvlGa/PNZiZ36fmTdTJCInrZtEB8YMi2j/8kJnn9W/D+FGileaAKFMMBeAzwH8lhFiSUmqp/SXgrez/fwv4x0KIv49KSJ8BXvpBvxEntnFl17KwyRv7yoKqve5xff8YznPqEC0tHtFOiny9pwT9Y8VbnPD3qFhD4xlsJjUO4jKLWWhKCUfbHMjj3j4rzpHpORBJB08kU70T1r19PjmnDv8Jf1dVamdFdsf8QxIs09rSFilNp8NPNK4YYrTROZe91TK/uKxix0tem7nFLm9+Sh2KE6UDas7QxHdvhnP8f956niBQQvM/Ovct5UlkglpbytrSv7o7x3jkUKpkAit0SRen+WICEWXhMnWodZ4mp+TWOR0lcFwrMUSGQMbQOd1TYlJZDEzRnRI2y+4Rg9THFtIIPUtIjuIS10eq8vflg2MkqcVzcxtq7QIlLLSy2I8qvHq4xucW3smejT2VO1D9BiwDO513QoNKUnOMTXc6jcap2wM1n4koSiKFWctB6lGx8qb2exNtMwHmM3I6XRxWc4b4ImbJbwFKaDYf6rOcvdaFX+0JFthR6vLHO6e4d10pnIcevs2nmlcMCGLZO2IkHc6VldFx/KFDKvbIrIs9kZcDtecmw0pNLytms/J1qkyEDIuu6mc+SgOjDAyjazZPrUAOR2oP72w3WCp1zDrsR2Xe682zWlT3uR7sT4WdUmkx4+TsBZG0OVY45FQxryR3RULNHprvaOX20QzCe6faYG9YNiR9w9Rj2W/lodH72PjnQUL6g48l4B9keQcL+DUp5e8IIf6hEOJxVMhoA/ifA0gp3xZC/BrwDhAD/8kPQioBzBW7PFFUKA3dE+DpOeUZfOXjBXw75XRFbbCR9Phe6zjtrPhrdeWAFIuRdKmKkblG3c7prOv2gLo1YKWoBHUrVW0qtXAf4WaJ0PzQlAixgpydFHJY5pp7SCerfVBzcpl3urSSxAj7k+UDym5oDuCyewQunA4y5EdG16HDRPtRGXG3wMBXh6V3OqDuDwwBYSQdQzII8MTyXe4NK4ba4NnGhmkspIX5WNhUrZEpQNNjsvmPjUWaKuH+3YN1rFnJiYySO8GiJEIzx24acJCUjfVatxX9txbepin8RAV0IMa81z/J17+pChDX/kXMuOnwu19SxsBfPhNScwZsjJTQ7Mc+j9Y3Tc5pJD26SWBYXnWLUDfbUp0kYD04mCoI061GXTvfdodx+fsoJ7Q3862D0zT8Ae8eKQW2VOrwueY7pmagYo8yCpW8daklEpPvabpdjvv7hhLctyKO4hI1WydgFVV32RvT3lFC7vpCk4/NXjO/cRiXCVPXeCdNpzcFt61N5GUAkysygt0Z0o4LhrAOoFnq4meUL0ex8tjsCbTRKHUJrOj7EtMPz2ybfwsT73XiAu/cWySd153fYmacvilyK9uh8SKBidoTtc6hdFS/B6fHfva5ojUmsCLuZKSF14+a9F5qcmNR7eHPPPU27Tjvpa7JMj/okIgHzX4+6JBSXgKe+FP+/jd+wHf+LvB3f9jfCETecKYoVFObF6oKfnnh4hZ1e8Ddsdo8V4cLVNyQxYxR8xvtc9wbVfhU811ms1DTutullRbM5nRRjKk6J5FIC1vIKajqQPomjlu3B1NhCdUus8I/vaGW4TNrV/hY9b0p9FBlIskGsOi3qTpDHs2SkjqMsRGp2OnmuGEselA9KD77ydcM1XPZHtFKi3nFtDXdFP4LzUscxmXzuxZKeKn+zHmP5524ZnplBFbEzXCe6z3V8a7mDDnh75nw2yP1LZa81kQHPYu3hqvsjpVyeai4xW/de4xBpK7/V1a/Z+CtADfGc9Ts4RS89TAp8/reMvUr6iAWNlrExVlmyoNsDori+fduq2KutXqLj81eZT9bW9+KmHM6RkEliKlEboqK52sLW4efuklg+m/vxhWKVmhqI7SA0vedIjgIS5xvKKU4TKZRP8AU/LaX+PzW1Ue4sKgU/U/NvcVhXDaCvZeFa7QX2Y4LuFbCo/VNVn+mpdbBjvCt3BPTisHkPVJX0V1nz7edFEzeQc+n4fTZDOvm2UKO5glTh14SmO9rem9XJFOx9kjaRjkkqBqUsxlDrvY6dCHenNflY8euG/RSw+0TiJiB5ZnPRaljPq+7zxnvJUOdtZOC+U0Nn21FGXLs3RnmrqUM2kqk3TlfZ67R/ZGEgB54Dh+SoS0kW6TYpKYQa9bu0UqKhmvp1196Bn/XZnw8C+nc83G7goWf6ZpErCa9W7SVUGylisbatOBMC1jkyd+RVLDUbx2dBhTstFLI+x78890nOF+5x0pNWbNlR9FxT8IM+1mbz70sIfg7dx9mMHY5e14dtCCrAtfCa8U7whWxqd9wRcJP1C6bOSbSIsXCnlAK/dQ31umc06GW9WPQ6xaIyFB9gEJQRROtKEepaxKioIRWNykYWghN86AhnoEY82przXhpJwt7zPgDQ6ewH1c4G2wbT2UnrBEEMW1Z4NZQeQIFe8zHlm/wh59Xz3ezPE/3sZBfnFe4TxvJnbDGF9ezgrNUIYPynER/qlhLV5Xn/R1UR735TAHqrn8zTo/bWU/wqjVkLG0TslQd8YQRUA9XVYGc5iWabEOq120kXdNT5Ju3T+K9XObNR5XAOlPZ5UzhXi5MRcL10Ry7I6VUX91c5WPHb/Bo+a6hdNECWvNeARQn6miKVsjV7hzXD9U6Pr+8wenirplzL1H0G4sZ31MkbVpR0fRmfrx+F1/EU93O2nGBptsz3kqaCepJwTupUGr2UFWfk3OKLfvt3BNIXXoymAp3acUwOZKJENKM0+coKhueqsCKCFOHjY4y/vxDi85x0FNS4JHEhASj+5RElnw//f9f1PGhVg5yYgMn0lLc81mCsZsoHp7fua7CEot/bBH7MOqp96s3E/x2wh9dOMPxggo9fLL8DgkWOxN9jAMRmRzDmnPI2+Gy6TYWoQSjbpe46h3gicRY7cdKR3TiAo/U1fsa2joJGdVWs6a4uDizQ4owB2csbaoTVjao8MvsRBGb6qqmDp7qmJa/r9logyzpnmKRpJbxjvqpz06i+h5PkrvpGP3kOJ3BRA8cdc3J+7gVNTnuK4t7P66yPyyz11GKOVq0+XjjPRPKqFgj1dc6O2Tniju0kwJf2T3PxjdVI53oxIj/4LFv88LKBgB/ePYipepoiiCu4Q6mYskJwnhugYhIhTXBQZUS4U5AfEvU7b4hCBykflbh7BtFrLvNjSYqf2+Hsyx56lmFqUPDHZhr3otqNJy+eRZYMIh99kZqHaSEwWNDzmWghFPBLrtR1cTmXVs1JHp7T4EsxveKdFf8rFYh9wRsJIGlCzMtM3d9H4EdM46yAjORTnVz056A5jV6u73EWqmFZ+nissQoAXWPLvNeR3Wwy57XSDqU7ZHJexTtkJo9NOugPQ0T2nIGBCI2z1+TP2rh35vgSFLfd5TRovMm2T003Z6pqi7bqoufNjhGcylydsz5NWVUncxYZuezBPYu0yHSP/8QPGgT+mA8GA/Gg/FgTA3J/WR4/fEeH2rlYGc5Acj6HouWCRsklsVY2iZpmniC7rogPacszyO3zPxrKenYzjHgcUMVg2Vx6p24NlVZuxtX8URskD2BiEgQpjdykiW4dcz4e3vHOPrWItoLPf6JW/zs4iVj1dsi5aS3N8WI+tnG26afAiiPKEFwK4NHam4lbb3ci2qMUpeqnXsWNikb2eeLVph9f8583xWxsdoWnRaBUNbYZDHfKM3hkLNOz4Sr9NiKGiY5qJKcvkm820ju3JnF21GW43vHFnmqsmGSxYdJmaIMcTOrzxMq5nzlvRVOf0Xdx8YXAnYvVJjzlOVXXuwxX+lNWZhvdZdphZk1OvaZK/R5trEBKC9uP66aZ6voN/IwxqzdU7DRCQLDyeJEPQIZTTxvWPWOjHDQrS1/7ZrKKa3W2nx+/m3T13qctUud9ZU3IwQ8tX6bCxVNSKgsZm31J1is+C3W6i21biOXtYLq96xj7Atum0g6BppZFCrseWgStap16Qv1G9k1VU2ETqZbIqVijdhE5cmq3ojjhQNOZD0qUgT7UcV0k1vy2owyFJXmeIpSh8COp8JEAKOJ8Nhk5bWGWutnoaGyOuzUzUJdGtU173WmSPUiw101JrLV2ofSUXxLGjwgYHamx1pJIQMX/fZULcZk7ueDDCnFfQsrCSHWgP8eWEQFwH5VSvn/EELMAP8EWEeBdn45KxT+M/PPfZDxoVYOEpG78H8Kyd1IevzV8y8D8D9YTzFf7ZlGPRvVEpsfd3hofcOEcC4PV9hzqwYe++Wth7CE5M6WimsWKiGfO/Euz5cV8+dWUuSdwTJPlhVi6oy3w9d7F/iHV1QR3Kjtc/yVCLerfvOWPM43fnLIp2Yy/hd7QNEOGaXuVHvTSDqG76kli4xSj8cK6jdaSYmKNaQ6EWaaRHqMpW2UFEBARDcpcM5XoS0dItPKpZsW2IoarHkHE32ImXKdbSQJeQw4TF2uDBb56i1VU/KXz7zKqWDXCKyjuEShPiLeV3MYJi6D1Dforc2wQbEwpoQSoqpYLCaYHbL3qFIw1vEeK37LhOL+k3NfV5+dEOCPVjb5TqyS5IffWaQ1hjsvqFj8F4+9xZLX+j4BpcN3tkgzSo5c8PRj1WJ1EgbcSV0D2X1/zUQzawlb8rP7sPM6D/0ct8c1vn5drVN65FE7NjIVwho6a3iwUpeiHfL5eYXufqZRMdTUOtSzHdWxkHmvA0sJP51ruRkq9tvJFpyIxLw/SD16SWB6UK/4R6TS4nstVWTZHhd4vHHXKAddW6BDRQCpsKYK8RRQIzXfqbijKQhtJG0QuWnRS3zsjPEWMgLL1DPfD1N3qklSlDqGX0r/zRUJg8SjG6q1Lt+y6C77hrIdlBLSVdj3q4e0vt/7NGIUQ8SrQogK8IoQ4l8A/z7wFSnl3xNC/G3gbwN/68/DP/dBxodaOQhy6gtNtKa34FjazDsdY6X/bx9uUbWGBim0/blb1JwhrkiMMvin159ACMm5pvIEFksdXr15jKUvZ12zqh5fXnuG+PPqQD5avkMsbWP5bcYNZpwejyxlgrheprO2zPx31BwKewF7w7KxLBMEW5HqB629k3tRjRP+rlEWmqLDCPvscGj+pro1wHPz+G4x6x9dmkD+WKRmXXQiVsNI6/aAll1UaC/UNfqpb6pzgaxq2JpolOPwra0TDA+U1d45EUwlY5fcI37+1CXenVd1BGdKuwY9BBja7cuj5Wx+kuP+Pj9z6i0O1zIL2e9giZTtcR1QNSMplsm9jKTLsnfE81l/mbca6xz7g4R21rfgaz93hr+08qqJcx/z9rGFNIJ7hOqop69vO9LMS9/nOLGxhaQqckTZvbRmoKZFKyRKHH5h7XX1bEQ8RZIXSZvdUYV0P0O3HetwtrRjkGIHSRlPxLzUXlf7ZVjmC4tvsZvtx1HqcsLfy/IKeRGba+WJd1UvIAyCphUVOB4cGuUx53TYihqkSDNHrLyILpE22+OaoaGIhi4nK/vc6Wfkf1WJLRTCKa9OjhgkvvEcXCvOPIMcMddLAvMbuqJa5yjmvQ6DJOcT862Imj2gVsyS7ljYpFNGD6imRrqoDRQn04UZlb/51nNF1mba39e3Qdc93DfPgftI4qfqvbaz/+8KIS6jKIN+DviJ7GP/APga8Lf4c/DPfZDxoVYOkxjyABUW0IdfkbJNW5rBhAu/4LYYpD5b4wb/3esfAWDt1xy8dsSlzytL70uf/zbOqZRLZ88D0LiS0jklTOevqjXk+co1Y+UfJmUsIY1n8M5gmS+fWMbOMOSdjw35ywuXTcjIJaFohXgiyRPOriL404n1FEtZ7rpgCMWjpD2HblqgZIWmelkVOeWPVSOCtCcQSQdbSKNsDpOy6jQ3wewaSYeKNTSNdAIRcSeeNYr23d4S7VaRleNZ0s/rUrTCCQs7oeH2+XQz95BsUu5lRHwLrupxMZ/x/4SpSz/1WfGPjEXbTQKOe/tTLrwl8v4doMI2psDwwg4Hd5cZ1zOKh8jl1c5xntGsdjClMBNp0U89U3GrUGlj9uKK8YA0WqmbrU3FHhl8vV5734qmiuRGqcs/ua6aJJ2aOeDpxi16j6s9OeurxkBakY+kKj47WVQhnZPFfSJps5LdkycUVcsg9UxCOrJsSlZoivm8rDua7hlxsrBPzR6Ye2hlvEp5MZiftRnVPSh8+rHPSkZLD6rfwsXadvZsO6bG4V+GLtJAkMmzNtkXQ3MtaY6yMKuTmOw2N5KuedaWSA18HFQIKUpshqlHWWZ8VpmyW8/AJPPnuvRj3/Sa+NGNP1MnuKYQ4uWJ17+a0f98/1WFWEdB/78LLOhCYSnlthBiPvvYD8U/d7/Gh1o5yPdp8EjaBoa6m5TxRC4cK1bKQPrG0/BEQioifnfrIou/q4Ra+fU7yFoZt5sXRr1Yv07nU2qTbz9d5ZNLt0yoQ7XvLBlBfXW8yOvdYzxaViykJwt7rD29Sfi4Wua/tqS4gfShiLCZt7t00sAIrpKlwkxawLsih9FC1hglg8Sq97POZxN8PLpID2AgfVMDAsqCmrF7E9ezGKUFEiwjQCarnfU1VM2AukbT7/EzF980Akjfjyb3G2UhCAMBTgKT61DPyaGVFI01N+P06CaBqUyfvK/JrmidZFoAVSdCBV9YfpPvfrFneI2ORgX6E0imkjXGIlecI+lOGRPtjHbDEtLUrbRthQzScOim26PpdMxn55zOVHHfgtvGEimLVaVwio6iv/7JOdUBTXM1mW53UlGUNDL8f8UaYQlpPEutbCeRZBqircdIuoxwp1pqJhN8UBphpd8vWmOWnSNe7akw0u+8/QjCkvzk+cuAIkXcj8qG+iKVFvYkiV72vFNp0cv2Q2qpe9JhpjBVlB9aATVdVbegvR2fyMCC9WjHxakWsanMEXV3Bw2utOY57BV5eFEprabf53Rh1+w9N0mmztZRVDItRdU6fD9U9s8zFJT1h/Yc9qWUT/+rPiSEKAO/AfxvpJQdIf6l1/+h+Ofu1/hQKwcLSd3KuV8iadOROSleSYTcyTDrRSs0BV+g8gvtuMDOfo31/UzgCEG4WCZ+XFnITbfLmnfAFxdU79zK8ohkgtJ5JF0SBNcjpdjf7q9QsHP+n5IV8jdWv2OsPMB0P4O8QG0y0atw9Lk1qj2Dl7onARU2eKF63Xw3QbyvsjiaIsUrZSyjk1DXVlrMk4GpYmidZEk9ikssua2p+0TmNSWrGWWDtgwr1iirSM7BAZOFV2PhULJCtqQSutujOjV7aISub8WcDu4paxJNn5H+qYk/e+Is7CVlVjISv5o95Evzrxk65f24yiD1jAKzRcpIuub7FWuoem3ougihqrYr1tAkTtV9uUbIaair6SEtXQYTiXtVTS34+aXXgRyimdegKIiyrpB2s1yAfpaHcZmT/q6pF1lxD2klJVwRTyT7i2Yu+nn2U988P9U4KTVCUlFT9M0c21lrXF2QNjur8nCr/lF23TEr/tFENbhKDPtWZJT3nWhmKmGsn1WYGRdle8QrrWN4mUCu1Ye4wMAk9uOpPtWBiAjctgkjaRoRff2N3gxHX1+kejvlez+hzsHPPfmaWWPIvBMUsEGPUeoaQZ6k96vO4f5yK2W9bn4D+EdSyt/M/nxP0wwJIZYA3ajmz8w/90HGh1o5qMYbeYOZyXaK/dQnsHMEyiuDExStMRcC1Zhl1TvEtyp8/PQ1vvZXVNiofOUYg8eH/AcXFKXTstuiKMKpXgWQcwxVrCE2kq90VJXuGwfL/I1j3zWWn03KrNMzNBSaFnuSoG4nDZi1e0bJ7SUV9uJqXqUtYm5Hs1zpqPj99cNZ3thf4ZFZZUE9XrlN3R4YwT0W9pQA1b0oJv+26LS5MVYK7R9tPseNrSZzs13TavJSa4VPzF01grWdFLg2mGc5C6cV7ZCjqGRabr47VLmDi8VN8xuTMWPfirgyWub/t6GMqINbDURtzKfOZBxUhX3DlTPZQnWQ9f3Wz7Nkjaee9xlvxyjWut2faiLkW1GGAss8kNTlIMl5s3biuqr/0Oi2CQU6ScFRtwb0XDW3t/qrPFy6OxXSqVgjrmdruT2q8Vj1zlTP6UjaRmG1kxI1uz+FTtLCDVQ9wE5cM8WHN8IFfCsilflntCdlyfx5hqnLAM+sS9Ea54o1yxfsZ+SP826HQeqZvhnPLNymMBEqm0T4qDkKw2h8I1T3eRCVOFO4hyVyLqSiNaac0dAcxSUerm5NKNWxEfiglEkiHUZZDsJ4HlqhIaYS4Bfr2+w9V+LeepmTJ+6Za2qlBSppnU4I7rId0k4K9LPfsO6jgX2/KLuFchH+X8BlKeXfn3jrt4B/D/h72b//48Tf/0z8cx9kfKiVQy8JTLtMW6TMWn36E3HvKUGceAoKlx3skhWCo/oCHHtWhUPaTxaYz/huQAmq7gSdRiAUrFEfbhtJ3RoYauKPZNW7OlQx6x1kISOlLHSSuWuaCbWMMNyIVMy4bvdxhT21AVMpDGTT/mqdeCD52hkFTX35whp/5eQrhh8pkRZ7cYU/PFAEgxer20SpbSpL1719duKaWZc4tZAtj/bVef7wSSV4PrZyg1Xv0Nzn9rhu+v4C3O432B+UaB5TQmw92CeVYkKwpxSd0Cisblrg9+5d5GAjgyp+RzCaKfBGQymVR9dVGE41/clpICAPWc05nawKXo0EyWHWPU6P4kR/56o9MlXPoITqflQxQnPBbWXGRGzWzRUJr/ePmbxHgiAStlFclki/j90zwTJrq/sP6KEr4LUHVrP72EKa5LFNyml/x4SJNPWHfvb6d0fS4RsHKg+2WmxxurBrlEokbdpxIafHthTr6mRf614SmCSqXtcrXWVshInDR5vXJ1rlOqZ3tv58O1V5iz/eP23WquEOjDcy4/RJpYI96HWa9zpGyanWuZGBwrokRKljEtqRtLEmIiZlezQVdpr3unx27QrhiktBM73aYyykWQddlKeVQKDzLJmEu39Q1vvaQ/pF4G8AbwohXs/+9p+jlMKvCSH+JnAb+CX12392/rkPMj7UyiHMWFEhCxuJFJe8PmCyUvhjlSt4E30Fbozn+fLewywX24Yk7COVq9hIXuor17Xpdjnu7Rs2StXic4IoDpXD0DTTDwWbCsFieiRkAn0i8RaIyIQl3g5XKVkhc3bHIHne3583xVIMpQN1rdJeSlgVNN9Qh6C/N8PmSt1UL0fS5quH57n8e2cBeG3uNHYoePgjinOqODfGm2hI8+TMHW6lS8y9EXM0UML77s/W+XgtRzxppJBuXWohebS2aTwq3eJTC2KLlHSiFekg9bm+Ocfal9WcC/cGRFWPGxey31tucMLfY9bu8c/3Vc3AmztLlIIxz86rvgIr9SNaSdGEYO5EM1NtQCu2ChOZ9bPy/I16BpKaMzA9Kmwkk7iWRApuhvP8xptP8PC68og+lSXUtcKZcfqEqTvV6a1khcZT+EjjOnV7MIEMS6aqk8fSoW71p/pia94mUMpIU5IAbIX1jHJb8t49tfbBcsSF4nTF82RsfSRdunFglMBWWKdkh0bhAZStyBBSDpM8X6HXBXKKCM2b1EsCTlfyWoiG0zeCeZRVuxcze6ZojalYQ5ObaScFLKSpyl4LDs1zAKWAtqOKSboHIiLCMVwYFpKqM8IWg4m8mEJR+VmPiCirqr450PQrEXNe1yiFvfH9qpC+j13lpPwmf3oeAeDT/5Lv/Jn45z7I+FArB39CyI1Sl720yoqjBFYXtXF1Im/RaRtLDtQhskTKgtfhck/RFewVqkaZgEpqPRLcnUj+JszZOZlXJw2IsI0QrVsDOmlglEHFGlISY8aZvatCDJZRGrN2xqA50SDGzhBYk+1OUymYKWV9rs81GJ8ZIrPiPpmo+LG2sg6SMhUnNM26Zl8XjJqC/aESQqkUVOyRmePJwh4PP77BO9E6SUMpSd2eM2+xOcYWKacyBXTC32PRaZt1aSVFAjGeyntE0jH5nm8cnaHR6DGYU68LmynevT7FO8rSjp9VCnAvrjKK1TqEoUu1ODIW72ZGG65j72901jhf3sl7LViRQm1l++FONMsf95c5nhV39ZKAs8FO7t2IFFvm65xiUbRDnj99k6av9oBm/PzjbWUxf3zpGpaQrGTxedXTYGwKEAMrYpS6Rii+n1Tx/UPxPSVGgC04bQ6TsikGOxwXebiyhWvF/NwZxSE14/Sn4vU2kq1RnXJpZF5PIoNa4wKWJ3OrXST0ksDUQZwK+lNhJDejoNfPchDVjJK7UFJKM0xddqOqQZtF0iYibw+qKTo0dNUVCQdRieu9zLjI1nAy1Dnj9M09jaRLOy6aOfQSH9dKKFoRUZKfpUjaU4bXflTmXsZLVXTGzHo9o5Cutud+4LP4YYfk/hXB/biPD7dysGJjeS27R9gi5ZXROqA28EMTHcs0UklbbWf8HerzA1yRGDrsSNpU7KFpTbnmHZBMFNol0qIvPdPfYNk9gjS3LPvSo2qN2ElUqKtiDTlIS6bies7pmF4JQAZJtKcKr/aS6lTXtEg6zDldnpxRLK2bn+tyaXuZWkkJni+svE3D6RsPatbuUXcHFD+m7mFvt8rFE1sGmjjj9EgQ9DOrb8U94q8ufpdrn9swLvlxf98Q/kHeV2A2s/Z01ba2kDUcV3sON6N5yvaIG0N1IL975ST12R6HH8sO+7EaIob4kZ55joZaOTt4MhXMFgZs9JSAvtGd5WcXLxlr9dvXTzBad3iuoUJ5mlPJy+ywMHXZH5eMQKvZQwWXzRKx74cjjqXDflTh2frNvCiyv4xjJbTeUkrtN+/UOXlmhzsF9fxXghZnCvdM2FDDhN2JYrlI5saDRkvpsIRKbo9M9Tuo8MiZgtqPZwr3jJXqenlB2YzTM0nthtPndHHXCCyNLNLGwpnyrmnzCUpo7sYlerF6Vt89XOfx+l1qTs7CmiCMsaJrFhSCLvOIk2CqwBAyT0zq/TAGaRtlEaYObxyumC5t56oya3+af79oh0aZYKkzNRkyjFIb25amKZE2GiZzCUrhqLNzazDDa6013r6j2s6Wv5eDND7IUPQZD5TDj/2IpWVyDmvugUIoWXlJ/7vhkgl9XBstEUmbs1lsPhARa+6BCkVMEMhpRk5QsdFJ6KEOEehrjlI3a12Yh1MSIaaEu0tCZSJkpNEloJRD3R6oBjPZHHQoRsehS1aIK2IeKam4vGOldGYDPtFUPSZq9mCqWGjFPeKZ8k2sJXVojq0f4luRQUmVrFBRYYjcMwFVJKYVrfaw9EFLYYoobZAxyepwykbSpGiNTdLz9c4qqRRcrKq1Xls54FRtn5nVDIP+mDq8J0oKo95wFVndvajGO7fUYZ7/A48rj65z5llVGX62qgTg3aESzCeX93mydsfExlUVtzBr61sRPz17ySiwOadDNylM1YAEVmSI96rWkGP+wVQ/7rXgkP/35edZ+UbW8ezqIZ1Hl3j16czb+Oh7PFO+aepBQDHSagNEr61+Plpp6Pdte8S9qGa6vFlIHi7dNYCGu+NZas5AUcNnwtxGYpGaQjzdwlNfUz83vSeX3BbJxB7uJQFvtpeNJzmKHajnVn/NHrLmHppz1UsCEmnxu3cvmnv85PJVUmlNVV0HImbGm967ejScAU/O3DG5llQKboczhhRPe8pa4O9HFYaJy+FYWf0PlbeN8tD1FZNFeOqaFpthwyi5+aDH7qiMc0s935kr30+N8ucbDzyHD83IE2kKqaSF60lvl8OkbA7/tw9PMuv3jXJIsYxi0Ie2aIWc97eMkNTdzPRBU8nFvtn8ulWl/n7JihXH0wSHkK5IBlXXEGVxasBAPwHT7hSUV6M9iRQLK6tNAJVY++Tclan7tkXuEXWSgFmnZ5rU1+3BVGJe1SDkTe+1skjSAmf8HXOfkXTMYTa9lCdqHxIE3+6rJOnvbT7EY81NvnlH5Wqcb9YYLEqcj6rf+Oj8dRIs0+8glRavXj9Oe03dv+6c54qEh46r53PjxAmSIGWpoBTrQ8UtilZoBEjBiZhxeiasdHm0TCRtLgTKU1h02qY/BSga8qIVYknNHOqrHEDmcdwdz7Lgtklk7hFF0iZsBwS7GWz42gbVwxbDGZXP6TwbmAZBoJRAyc2r3YtWaBBr8P3wXG39tzJqc9Wv2WE/9s3vH8UlFoM2lqPmvR012I4aU8pBU6ZPXvcoVnM45qv4/mQF/anyPqfKKtxWtMfU7KHJAWyNG9waN83+KNsjrgwWafcKWO+oc/Hyx0I+t3DZNE6ykVTsnKpedQKUxuvZG1eoOkNTa/D+CuNR6lJzBwba/GZrmcNhkd19laDvHA94uLplKrBBU3a7xnNoJwV8K877UPgJjkh455xSQDvjKvwe92XcrwrpH/fxoVYOvohZc/NOX5F0mLfVZkgQtJKiQW083VDFa9UJ+gUr4/fXFc6dzILXRWQRNi5MQA8FJTEmyiB8o9RlzukYd1tb1rqT3E5U44yfwy27SYFX+uvm0DxXuU7dUvj69wZKOTxfuZZRWutG6RYReWz1qdIGkbR5baCKmK50FvipubcmWnJKAhFNEfHpHIAek8rCRkLW00Erq7G0eXOwZgqh5t0Oi07bCAxPJOzGVQNV3HuvyVeOKnjvqO83rkT4hw5XH1LhkgvlHW4PZyg5ah1bUQFny+Omq97/xNxVXJFQtkd8Zk4VY218aW+qe9drvWMs+h1eqCleq5IVZvDWXGD4Ip5qGASeea2KtHKPThcwamF9O5xhkHo0na5J0A4SD7c8JnWyBPPKEu3nVoh+ugXA6co+r3ePsRyo10uuIn7sC3/id7pGSR3GtamEc9ke8e32KV75IwWlvvd8hV9afoWrQwUZnXX7lG1VazHp1U022gG1D3WI53Y4w++8+whyL6ONv7jNTy2+Yz6rqa+N1Z+14NTnJMggwNFEGMoVCT9x4ip/0FfeQ8HR8F9h/m0lRTMH11Z5C42gAuXJtePco9D5GT3aSZFW9v4g8thvlZFjte5xVqMQSgdb6i6LdtYASNOGq3lqBXMQlXBFyotrKux4MF/kvf+CDzzuM1rpx3r8yPwjIUQghHhJCPGGEOJtIcT/Ofv7jBDiXwghrmb/Nia+83eEENeEEFeEED/5o5rbg/FgPBgPxp93pNL6of77sI8fpecQAp+SUvayKsBvCiF+D/gF7hvjoMzrGKSPK2JT9KVadg5MXPyYe8CM3TMW2GSXM51A/kbnLGvBIc8XlHWqLaPJnEQnDaZoIGxS4ymsuQccJGUTa7aENCyqAFdGS7zdXuJsVRU86sK9QET8fOMVcx+D1De/7ZKQZOEoPYpWaLyP9jiYqvzVtRmTeQ2LdCo3M0oLxoPSn3NFbO5rbzzHr7/xJFZb3fdTT1/lUzPvTlA0OARinHs31ZiCH5E+pr5/+6yL44353KLKFyx5LS4UNg23UlIQ7D9fMk2Q/AxpNEmP/mRpg7eHq/zG5cfV/N4tMvORHT6xoCC5Zws7VK2hAQdo/p7JeLc3kdCctXtqDbL8pQYBaI/sVLBHJG0O47J53jp+3T2hPCJnaYXdJy0+ubwBwPGC4n7SHlXRCqdCWftxFc89MgnrbppMhSkNxHVWzbPmDRlJlxW/pZ5tXODt3goXy5vGU1B07XkOQa+Zvta3tk9SeqmA21c3eqveJFmwDKurTUpCLrw0tbk1YZFH0p5qXboeHNBNAv7S42qPNt3eVLJYcy/pObbjYgbuyIve2nHR5Ah0NzpDn5Gq39WQ8kHkcnpxL6cld8bcC6usFo5M3+m9cYUZr8+dLAcVpxZny7sm9NRwFdRWN4Pqx/lz+SDjQQ/p+zCklBLQuFA3+09yHxkHLSGZzWLGVak2okYCtRLFNKrhlBVrhDsRdpjMA2iY5CsHxygvhKaQLpFWlhDODmKWKGxlCKgZu8deUjECSsf9NfoklRaLTssIoBP+LrX5gelRrKGuHRkYVFXd7jOSrsHzD1Jf1W5k+zEQkrG0eaasqpmfKm1gibx16UFc5uXeCcNO+UTxFntxla/sq9DFZ+feYd3bM0pBz20yMT+SDouLLVo3VaHU9947wUeeu04UZ5TM9pD3hou8fKC6tj126g4PVbcNR9BRVFLdwwxdwphB6ptE/lbU4HPzl3NenCxMVbf7RmnvxPUp/H3xnmRru0FtJUfVVOwhm1lf65v9WT7dfNesYyTtDL6s5txP/alwXTdRfFI6TGGJlO8cnebd/Xl++aSiZmg4fT53+l1e+3cVt9lBr4gtBVVHzatmD2knBVNR7YmEnbjGnxydAmCjPcMvHnvdtFiNpM29qG7YX2ftHo+UNznzojIWinbInNM1cF0osD2sYomUj9feM9eY7uwWZwlotWePOkVqQ0k4k0GdY8E7vSWerKp6EVVxnVu13bRgqGf0+0XykBUiJUHBnyeF/SQRXy91DRUIqAR1mBXTwfcnj1Uxqm3CUGV7RDsuGmXwkcWb7IdlbnfVuXr3ziKfOHuVmj3kpd46AFf253l68Q41V+2HVFoU7bHJB0SpM0XhUnIm7ukDDEmOqPuLPn6kOQchhA28ApwG/hsp5XeFEPeVcdDE+xF00wJzWc5hM65zmJT58oFqE1pzh3y+8aYRPnV7wFbcYCeq8UcH5wD45MJ7nAu2aSV585uRdPNetgTYSOMZ7MVVilZoqIf7mcWvi+I8keCJxAioqj2iao/M9fqpTyRU32rtXSTSwiWn4O6nPotOy/RhIKMm9yYS0om0zG94IuF7e8c4UVUC6anSTRbcFmcqSgBNNhoClV+wkYprKIMavttb4nj1iPIn1IE6VjpSUOHM7N6KGvzRzhnG/1w9uo1nIp5+9pbptXzS25vqc20LCTI1ymfZPZrC6kMGl53IhaRSYCF5fn0DgJesY1xc3JvgPVJFbycLe2YfbIYNelkMeph4zNXzIihbpFPw1aIVcpiUjfVatwcsF9ocVYocRcrAmHc7zHldvriiagz2ozJvtpaN5Vi1hlM08DW7jysS5rM6iVFZ1dIYRYzEtyLT/7lijSjbI5MMdkUyVVH9zd5p4tSi6oxMtfSM08tyJXmzp0HqGWrqZOAwmhVonrnChsfrMyucL++YdZq0+v0sSb6R1Va8ebTMycqBaZ2rSSYn4bFR6k71c9DzmqRLmRyuFVO0xuac2MgpVJj+//1xjvq6fDDP6E8yiO9yQsGOGKQeM55am+P1I/ZGZdazdqAr/hH7E4V0kOWMLK0cJnNRH2z8RQgZ/TDjR6ocspDQ40KIOvDPhBAP/4CP/1CMg0KIXwF+BWBh2TEhIU1tcT1S2Ppb4yavtY+xGGS0EcE+M3bPuPQDFFtpxR4ZrPyZrMjrzlh5G4dxiSeKG0aQztldtuIGcxnz60i6XAsXJ0r2xyohmf2GRhrphPQodbk8WjYC7tpgnrId8kuN79HJ+HNKVpgxfaprzGS9mnWSPLAiumlgkuikmCI7UFbdXz/+kknUVq0RB0mZn6pdApSlOEo9g9LppgXGWSGeVnqg3PRfXHrVvJ7sNjfj9HiiucmXX6gDcHJ1j0RaJqQTWBFFK2TRaal1TMpTieJI2oylTTCR4E6kNQXBbCdFXjpa59KldQCc5ohzlXvmYA5Sn1ZSNPc573W5NZyl7qp1mc3gsVrJWqRTjK6dNFBNhiaU7PPl6/hWPMUzNClI14N9lubb5l7+pHuash2aorhuWuD17jFudNX++cLiWxnMNKvBcNR9GjI4LCrWwCiwkVS9wLey8JtnJTSDPkte/pvK4IiNt6r7S4+Eus/jx/ax11PCzMvb2q3TcCOj8LR1rmGiz1Rv0o4L/OEtZSAlb9ToP+dx4ZhCjYUTXoHmqWolRSxyaK5vCdP1Tq11zn+lx25UNXM4U7hnKOnVs1Q8SkuGu2vM7UKDG+sZgeXcgJIdsh+VDeJtnNqU3dC8PopK2KSGgv0oLuFbsTm7OkT4gYd8EFa6r0NK2RJCfA34KT4g42DGh/6rAGcfKchJiOfXexf453ceBWBvp8bMd12+8xFl/X7pkddYdNrmsF8ZLVGxR/hWxGPBbXP9FIsrGXLIsVQbUo2I2ksquCLme0MF2QxExNu9ZVOV+ULpKt20MNWAKMUyxHtfb53nq68/RHFOCYtHFrc5Wdg3ldagKpxtMcGqiUVVjGhJdbAiaRvrWv/G5L+eTMDJD6ZFSsUaTtVRHCblPzXXoJXYJ+rvcnvc5Mt7Spf/1NxbU+gnV8Q8X7nG2Wd2zN++tn+OZxtqbU/6u1MeU8UasRU1TDglRSmSOdE166hNAx2S+/VbT9AfebjtrLhrp8R3GuucOXYvm0NC3R4YQV4MQh4t3DZhJW0s6PdTLDqpO6V0D9PcUq1YQwapz6p3NJVTOh3sGM8AlPL96qEK0b3+x2eJqymfeFqhgR4qb/HO0QLbV5WBcqW6x6LfMQrMswfsxRXzLLTg9QzSTOUTNKLpidptdsfVKQW1E9Wo2Hl47A+2z/P83AbrgdqjX1y+pBrrZGGmNwqrlN3Q9CCxkXSTgGIhi++nqvr4oXn1LL93vMCslXIvUvd8zFfXTaVgTE60p5+BHqr7nHq+vSTAneghEaUOr7dXTTe2FV8V0GkjyZUqTKbRca5I+PT8FRYKah1GiZOh2UIj5Jtej7KdQ5sbGbWJrrXZGVcp2JFBOr2fE+vPO+5ns58f9/EjUw5CiDkgyhRDAfgM8F9xnxkHJxOQf7x/GusfK6vtwutHiP6QwqEqqvpy5QLWCWlafNoipWIPWXTaU8R6I+mynCUEm27X9BqGHKqq3emiFeLbMU81lHJJsUzSGsCWkpIVGjqFr75znuoVh46TJdVqZYr18RS5X1GEUwVnCYJWWjQuvaX/LvLQVMkKjSDWPaM1x9RIulk+QZi5F0VocjMBUdZsaGh2Qyspcczbx5+NzDVHqWvqHrQlHKR5O80XZ6+Z2Pv7ezEfJGW+2z7BQ2VljbpWTJi6Jvcykm7Wp6BkQizPLNxmmLh8faBqKZJ7PgvFrpkDqJDYjNBpLV9BdkVOrDhJvDfndOimBaIJT0El9i3zOrAianbfKJg172CqfiCSNu8NFrnTrQMw87akeC/mW7PKWDj/8A4nqocINWWW/TYVezTFFAy5ULUtyVFcMl309Jx0CKlijagVhniZkaHXtpXk1BJzhT6OlZqQTc3OKMezsNKxkgr1GX4wkWZ7JO//0XR6PF9X3vPaY0fMun1TJ6Fpx3fjXEn5WY2BXruaPZgCUYSpS80eYmujQ1gcL+bcTlpx6XM0SF16Sd7iU+dUNI1JwY4M0Z6+7yW3xb2oZrz27bHKUemE9dfuniYMXT6+fj27xv3JOag1e6AcPuhYAv5BlnewgF+TUv6OEOLb3CfGQSezHkEpicNhkeqm2gTy9hYSqF5SVlpveYE/sM9z8byilX64cId+6jPOQhygBG7VGvFY8Zb5jYOkbAjnbg6aXCxv0cwqnt8dLnOlPU9lVllAnVTlJHQR3F5cZSRd07f44slNbjUaPDajrLEzlV1mnJ7yFMg9hcOkbF4n0qKSVVGDEiC6sxrksXSds2ilRdNaVF/vO71TJvRR8ndggp56lHqMpEsrKeaVu6TYApND0AJJCwdtSesEpe7apkcnCfBEYg7yvNPho/WcAnx7XOe7h+v4c+r9M/49Q9msvaJHS3c4jMvULmYkdxccjgcHhndIVZYXDBBBD52YH0mXObtjlObVcJGKPTL3rRLUw6mubvpebZH3RobcUv7dnUfY/2drZKwgBLMgpEtQUOvmWxGPVDaNEgRoOh3zrEwjmqwNqCtUgxq9rt0kyP6Wh5D08+4YkjuPG8M5kxR/cfYaNXs4JbBUHwv1W+uBooDxJ0JllpCM0pyjKJgAalSdEb3E53pPeXCN+oBB6hmmVFCegE7Gq7ULjBcESkF1k5xjbJS6WCJvI6o/d5itQy/xpyz7RFpTBoZNapLL+rvbUZ2lrJujuQaSVha6Glyr4bUtrjbUw3p0JqeT/yDjz9js50M9fpRopUuotnfv//sB94lxcLITnCcSPrl8la+ceQGA+bc8ZDhGjNUmK+ylLDQOjeCuW4pyWLUTzWPtfekZgTKWNq6I+fKW6tew89Y8f9Q8R6WeFc3tlyhe9/j1i8pbOfHkHjNOntdQRXN5sc+/s/QS7nIOZVS9o0t0k7zJ/HF/33gwoA5SN4uPAxykZdN3GrK2oNjm8/1UWdDaKrNFxHqwnyeikRwk5e8jW7sX1Uwc+7i3TzBBb97Pqon1HFwrppWUzJz3ozJzTpc70Yy53qLTNvetlYmffb9oh5wsHxiFshtX2YlqWEIaqzIQEeeC7ZyKHMHbw1V+95YqxLo9P8O/M/8dc5/91Aeh0FoA8043T+KjitE0wABUYv4gKecFjVlDI92LHJTQq9sD7kmV17p+Z56z3+kQl9Uc73zWp/Gz23xh4QqgBO3CRNOaa8P5KUinJrVrZmGjwIpM+EvPUVW8y4n9p5Bcel3acZHrvTnmAvU8L5TU+ujf1FTVOmQzSD0DNVXPXyGb0vd5wdr4GKQeX908S6evXp+p7NF0uwQipp0pUFckhsgPFBqp5gwMN5J+TyuoMHW42p3nsbqigNEFcbqI8su3LrBSa/O5eVUA2U0CinZoIL2mc+IEiKGcUY9oZbHiH3EUl0xB4kPPbNAJA6MU7l8nOGFCVX/Rx4e6QjpFUDe9lAOeKN7i155TDWVKO6cQsaS/pG6x/bk+vzB7zaCVFJeLRcXKWVh1CCZnelUH5PFZtcG+cdrHd2P2byghuPQtQWqnDI7llZ4lK5xKvm5MkKpV7BGeSChlnkfdGhCIiNcG6/yTq6rv8H90/k94OLjDRpZYL1khFYYmJHFr3DTCF2Dd3acv825ki05bteA0Vps3VUWs0E2CN/ur6nqDGWb9Pr4V83RZhRZcERvEFiiBUrf7RtjXrVAR/GXhpbI9op96Bue+G+VCGWA/LvNPrz5hyAJ/fvUSL1SvGQE1a/d4pb/OO50lXpxVdQwztiII1EJvJF0udxd5clEJmBdq12klpe9DX+nOcCPpTlVQV6yhgm1qtltU7kZTpe/ENdLMWNDJf12zogXr2WM7bH/0OLqUIVkf8rNLbxqBZTrnZev01ZtnCDs+n3lECb1Hy3ffR4+tQptaeWpuKHNPVsoodfFEbNA232md5NIb6yyfVSitGU8x8uo6hhX3iE4SmBzRZtRQdBaZtRtYEUlq4WbPqpcE3B03TO/lP9o6A785i99Qn39p5jgfn7+GbQ+N9xGmLkWRmJDOH+2d5lxtl+NZ3kM33tHx/zi1eLaxYUKGiqAwNUii440j1kt52KmSQVt1bF97DJNos0DEYOf9KXSdhf7Msw3FJKAJBifzIx90PMg5fEhGKxPgs5ZqhfgfP/d1AL5+6gx3WnXmK2pD/rtLbxjuIPW9IsvOEXVrzNWsFqJuqY5XOr77an+dmjPko1WFMVdNTLr800g5RPuP1YkaCZ9/SiGBVKLQmeJiSrC4HWZ5kMIWRRGa5HMrLRJJhyWvxaeOKyI9fYDWXXX4BzLLKWRhgJPe3hQ19bvjpam+Bh7JVCvLb3TPcqPXNL0J1txDRtLj1UOV+7/76jJ2COPjIbOPKwHxWPH2VNL7TjRjiO1AQVMn26V6ImYkPdNg6OVr6ywtHpmCtUvtFcSrVfZrSljcac6w5B5RsfNWl9thDcdKDGJsLG1GWSN6ULmRZ+obpg1k3VZUKDrnpFFd2nq1RMqs3ZugFVfKbrJormoNjfKu2wMQSnBtxEoxV7MktQ5/RKnNhV96FydTBmdKqoex8agyKKphmI2c7LeyPubZM5mEper6C1ACbt7psJNxLk3yYl0LVc1J0+vj9C22rmQI8IUbU5DS3bhKKoUJk2nlqJPJOeWLer0xavLq4RrHSkqp7u9XWL89Jmhl72/MU/NG/ETzCoOJlpyTMGSdOJ4Mw3XigK/eVRxUK7U2TzVuG69NNfeRBnb6qeYVuhnzq35/sjPcJCfV7jg3PFwrMddIELTjgmm8FKYuvhV9H4vrBx7yQVjpQzHERIW0jaRuD3ihpITsuWCb1lKerD7j7UxVhi47bbbiGpHMIW7fG57kq/vnTe/bqwdzzJQGNJaV0HyucoNECv7qqZcB2F6rKWK1rPgLMmbWbCPOOR1e6p/k27uqUGt19YjA26WKEga7WQHdgtviM3XVhD4QEQPp5xXcibbWM+iqNU2kN54IgYHKeyy7R6YN6Kv7a9y5M8vHZq+aOWp0DIDXEjTfjNn2fHqPZGGBVOUgNDHc5d4ivcjnQlUp1xm7hycSI4DG0mF7XOe1P1HC4MTvj+kvzvPq31SC6aPN68x9scdRqJ7H05WbzDtdgwrqpz6fn7k0FeJLpcW8082r1FMP102m6K91AheUop2E21qkqjlQJjwOs3i+DnkcjksMHM8gg1Q/6TG2GBOkY7Omo9Rlc1gHIIwdSvaYT9SVok2xMmGb83mVLEzB13/4yJ8QSZslr2XWWxEdqnvSCksrk/2oQtPNazNUPsyZUtQ3erPYp3tE7ayrYBxwzD+YyhclWBMFiNF0Eh+Hm+G8saSL9pjHG3fN6/m5Dnc+M2eIdYo3bNKzgmuDBQPU0MltzZD6YuMaR3HJCODAitiIZhm9pjzsd+ZqHHv2KEcnZf0mdM7CQoUTted5d9RgmLgcKyhvoun2cK2IQeLze7dViNeyUj61ku/pUaqaFg0M11JIO87zZPer7/ODnMOHZAjA04nbLMQ0yjbBjN1jzu4Ya6WVFqfoEkZZPkGHHwDe7K5y83dOomnl1z+9wSeaVw2qJpEWrhWbmPCNYZM/eOsiwlbX/OLDl3iytMF8Jiz24ipPFG+BNvLcVtYYRx32t4ZrfPPgFJ+cu8JJb8/Ms2IPp2g+tBCefK03fdUaKssqO82HSZll68jc03NzG5yr704Rvt0dz7BxV1nMC3dSuqs2/rm2gQlqplHdFvS775xi9iWHt59XNYnukwkXi5sTvZELbIU1qspRILixz7C5RNlVQrLpdDk7kydpIc/nqGeRh+Um8zFTBIEiJUnFBIrLykIJecV7yRrndQ0ZKkfnIC4Pl+nHPn9wTcFQZ2p9/srxl3MEkR1zNVw04To9ro/mTYJ5we9wazDDKKugr9t9LFJD2T3vdBilrvF+9LxMpXDqsxtXDSU3KGWhAQ+/dfthZopDvrh4KbvnER4xrSQvzLu5P8vFxW1mjyuDZNlv/cCiLI3Y0grCFQk1e2ASwJFULWS1UP3U0nsMFjZoR2rP3RtWWC8dYAk51VjHtyKSdLq1pwYLNJwBM24f6xG1lscqeSEdwFGmqJcyoMY3W2d4+e4a5xcUqv2d7QWOzx0Z5aArsg+iEpUgC/n1ihyOS7w9VGjE/UGJJ+buGkMtlA7WRK4lSu+PclD38UA5/NgPSY5fHkuLYGIzeKjOUdrynrNVsm9SEOmYtN60BTtiuJiSlNQheLx+l1fax/jWoaJD+GzzMjNOj9f7ijbiDy5dZPGrDvY4i73WznD+7DYWGtI5Zs4aEZR12CFWPZ6zROluVOHxLEmnE4JzTiejQM5bbOq5glIOij8pMK914Zz6zYiNcZPzvioRqVhDvAlUl2oYP+SRkyqP8ma6yvqxPT4+f80kSi0huTue4V/8kQqfnfq9EO/uAVaU0WmsH2fJa7PmHWRzL3A8OOTrn1Fzvl1dYfjEkJ+rK9SXRgltRnmP5UWnZe5JK+1IOibEopFLk4V1uiOdet6qMZOG7FbtERbplADzRGKqkb957yRbmzMQq4O9fuwOc07XKLitqMGb3VXSsmVCe4GIeL583eyZVe+A9eDACHdPJKTCws5yFAZRlCmoBEtd3xSHpXgiNy5KQnkRlzpK6R5tNJh5aGi8m26ieLOO4hKdDKIZDlyOwqLplbHqHTJK3SnIbSrFVDV6OykZK13NQ5piMVckNJ0ObaG8mEHq4aexseILdkTBjlj1jsy8BqnH9rhmjIlI2ESpQ9PNK70jafPp4yoc23AHhuMIlCKJUiffw16fgh8xSrI6iqOATafGJ+ZyJRqImFm3zzNNtafCGZd+4vHumyo8Wt6w+cZHfH7pzGvmN3bCmpEHOrn9QYdEkDxISP/4D4kwngJAX07fzk5cMWGIVlIkwuZb3SwO6h+x7u2ZYiqA08V7fOmT3zWwz41Rk1dePoM9UAJk9lN9frLxFl/bUkD28nseg3kIZ9Rhf3h2jzmna3IK3aRANykYTqE70Sx7cYX/9t0XARgNPF44dZOLxU1TTdxNC8zaOT32CDfD4KuD8v5q41ZSyhq4j/WiADlCSNdxGN6k1GPBbfEz88o6/VTzXQIRsei2jYCJpM1WWKehIl24h0NwHQr7GQRxUKBm99nNfmPFPWLFPeI/e+QrAFw5tchacGg8LoAb4QK3Q6UcholHUBkbK30nrmXzlKYYTnsW+l51HwwdZlKJYodWqoSaTo5rRd9PfTaTholJd0c+WJJHzitl/GhFKceSgb6OOVY4VD0fJqi9JzsB7sZVTk54Bd2kkPUMV/suEdOVwYkUU3QpkbTppN5UjiGwEk6XlNc4/3yPRb9tvLyxdIhSFdrSdBazsz22W1WY089ZUUboUKHO0wRZh+zDuExlAnb6VncZgI81VEjGEikj6RnB/73WcQI75lQ2p5IdGkWik7+DxOPb+ydYKannN05tEzIElYPwrTyJXrOHJnSk51i0xlSEWodFr8Pnj71jvJvmY33q7tAIds3NpLycjB4nrFNxRpy6qIygW/MNTs4cmQS0L2J8K6Zsem3kAIsPOh4kpD8Ewyalnh3uvaSg8g66kU7qUbfzhuSa/1+Tw+l+0JNFdOvePmf8HSMkw9Rl6fyusS7PFFXLxc+uqJjztS/OUXLGPFTOW1G6Ip7qizAZ6qjbfb7XO8HgSL2/fnyPn5l9Y6olokXKQVoySUaTBM5eW6QcJmWujJQ7vTuucKZwj5PerrmvWadnPq/vW1vYrpU3cYc8pGNliCRQ9CG7ozId5TAh7TrtsxBldQk/u3STdlIyFc86PKQV3GylZwgE9ajZfb6+/ax6VrtVSo+HpAUlDN4bLvJqus6nqu8YRe2+L0Y86RGAEjB1Z4Br53mLw7hsBOtWVDcQS4AvnbhE7fRwyisYS5sR+bMpBWGGysqYPFOPeXtgGG1PefcM3QgobybFMhbw+yk6tNd3O0t6a4jppOexF1eMMTLvqTayOtejQmNjTvh7RnA+3Nzmbr9OM7uPbhKQWoK9RCX7K9aIfuobBVWxh3STglGSd7p1Kl44lZMYpJ5pv3owKrFeOTSfn3c7hKlrBDvAxmCWze8tc9dSiiZuxIhCgozUb14fLlNZ7fCJ1WtmjgdRia1hRnVjx5wp7RqBXbRD8lp1aFa7U418NOQXZzBB1hcy73VYzBLQ10tzhKljwkrtpEDT7d53HiT5ICH9YDwYD8aD8WD8aUM+UA4//kMiGKT5LYyxTWgpQVARMWiysNQnsCIeClQ4QdM3T3ak0l7ES11Fh7DqH/ELq69PVUTbIuXRrAXn46W8khpgxTliM24YfqB/dP1pfub427xYUbHXRFoqYf2ssm5PB6odaCAivMyyn7cVQmcSYTKJtKhYI9LEMnO+F1b5bO3tiUS7a/oMQ0a09z7ivkjaBhGj4t6q5kNbWXNOl4/OXGP+8xl99rDC4/6Aucyln/c6WCI1yCAXBTvUc46ko0JdmXdikfLucJmzDRWqeGR2m4uFuyak8/9n77+DJMvu80D0O+eavOmzMivLdnVVezc909PjDQYDSzgCIAkaSDQSKUFaUcvlPnnqvZU2GIzQbkjUasXQPoGPTlhSJChSEA1IAEMQGLgBxk9Pd0/76q6u6vKVPm9ec87743fOuff2ADMDokGhuTgRE9OVmTfz2p/9ft/n8BhjCkaso20dnevjEpIrJBi9vuBuZmRLNVpNT4pP2m10ed7MMdStXqbEYzGBAl49/5Ge76hZpNJn5hekg/Woglk1Oe4LF6G0ktkZ8MzAmgWJ7djBn6ghyhvnJvB9j37NlJWgaCz0eb8R1NCNPJOpvrQ1gzFviLc0z5kewL2VRTxQSQgK63bPEB3SPrrw2Mig2K6OxiHAsKUYT5v5Pu6uJdrbOhKfcOg83T9+FXW7nzCwKsSWSE1Zb/gl5DcYxpQu842Hbex5eAUXV6nWJXo2hGQ4254y5/rijQlgVV2vaR/5faEplXksgmPFBqY6puQ+u6kejm5K6+s37baxGZVMxl13+xhTWSIATDodxGCmPMtTcN9vbX2XeO+2WAzS1Err3Me28MyD5rEILZFDWT0EGt2iyyuhtNCVCYcNQM3g/7J5H770OSKcu/dNr6BoB7izlExh1q0eVtXEbJGPMhoBq1ENvnCMVCEDiY5oI9kSRUzYXWNstOBMkYUIlGHVA2z6IdCInYHMmX0t8BHuyFPt/JB3AxziVWJAeunpal03181C/f1FPgIYMqgtl8WYcXZQVzMiKCewTSCZxUgLJqWHlHT/QxtqAHikfB6PKJkCXfbQhIb63IcyETXypQM3Je2pnZ0ul61GVWxEFXMuNcOqRnZVLJ+oMNTnG3bP6GcDiYZ4mlcrZLbSCCcHcXE0lZGynM9tosKHprHesHoZpNh6VMkwuVoQ+PzWEdy4SEZz4mvA6ePTGHO0ESujZPk426cS4aefOY7SFRu9I3T+eMfGajXEseoNg9+ftNvkDETiDLpxPqONUeY+vtzdD4A0SiLB8dAEDTjuKrQyA2EG6qtQXRYE1oOyoUIXkoSCQmkZRNOBygaWH6lipUkXlO/v4XB1DXvL6noeoIDi/CbB9PrrRTSetuAqAaL2ngJeHpvCnlnqSWlWVt3gFpJKdeXUlLeQHKGwzWsxGAo8wPMdakif25zAseYqpj3qg0y4nUxJ6Vb2Cb6bOdwGS4IZzPVI0U6npygnrKT27iJGCMsYyc/3jsDhEY571xO6BHi4q7yEZw7RDVdzh7jQaZqI+ZHyeQxEzgxSzTg7KHPfGJOa1ceXu/vxpTXKPE5OXYeQ3Hx/uukMJNnLliigpnsBKjpLR7geD40ojdYgMNxICoGVzD046ArP9D10NK25lvQwW3qal7D33KjDmaVOpS/o+zlPDLTFhDGcXZHPUFNow65/E1BDilpzWHIUreTzRT6i4T2ZM45tKy7RubN0b8TOQHodFuELOwdQVIRq7xg7Dc6Eud6BtGj7FJeSdVP02BXJ4NWU0yZjj2xv49dPP4iZBhmcv7H7y3B4hIq6Vl3hgUPgekRDjqG0cHEwYSZ/T5Su4b7aVWweJMN7o1nBveVNE6XfCGq4PGziiS/fBQA48DtDOEvLWHs3oeHCAkN/t4NWWDBRsQDHSjhmrvdmVMa43TWZhMUF+sLFuS4hy66/OI24GKM1Ro10rSqXzkZHqYDmM8uHEUQW3q74kSfcLjgTGMQ5o5Ux6Xbw3r2nEe5RSnbCRtUemnM57nQx6XYwUOpr57s5CMdCWFDkkSEQC47rCvo6r5Tm9L1vJqI12aTKGjwemmzC4RF84eCcckDBU3Usv3WIA0XqvfViD70o4WxKZxXfypISGQjvX+V1WzsHBoktZYDK3MeTvcMGrfA91VNYjqsmUxhIIlrT0fEh7waaCpeuH5Qy93HcW8I/OPIEAIqMT5RqplHrIMaE1YPvat4j4uHRkXIrLmLC7WKiSBH1k185hqd2LWDsDtp+t7OFptVFXxmglWgMM/aOErpJLoWLGK4yMDeXmAAyrvrzGuuvMwtSr+vDs8PUZx1zHsio580chcdCLIWNDCxUgGecrKvkN19WlBsPVS6iHyfUFN3YQwxmBIjWwhpuBFU8WLpottfssgA5rIHImd/Qg4NlPjQGfMpuvWqAy5EJP38obRwprZqBs5vpEVwWg6eGxzymm8fkYC76k3i+NYfvn3zWXEtfOtRUVtuVLB/vOnDGIGQCaaOABDbcsHqmKQ0Av7n8ACwmcNcYlS6FZNiOithXoQj5nVNnM/QZk04bpzozGHuZjI291UM434QWTQtLQJwnmgm9nS8cLPl1A23dX1jPNMFJ7yOPY1WCui4dqIEziYqdABGEZKlrl4fDIvMMbG2WIX0LzxbIQb1l8jwEGL66tWAot+8Zu4aSlSgk9uIcSpZvKLsHcS4TqTvXc3C7EusP0bXdc/gGFkrbZtiUM5FRkgPIYa2PanQd7JFxaOkyo8dDHBonZ/DVAyWM5Qbmd68Px/DCxgxOTtC10JnXrVi3C1qJMXby67zcBnBVSvm6ZFO3tXMAEulOITm+urUAT6FXRJUi9l9bexMAYNpr4/HKWWMAdbQKDlN60tBXXWaasLqYstsGCVLkI1yLxkz9vqbYUk1m4HTg8QAXPYpmzncZ/HbO1KApgk/0m4sg1EhX5BMiPYgMNQEkR4wEXUSqbzn8WZvq2KGw8N76i5l+yZ78Bg7lyDikSzPppb/vlL/LlKq0ISbDkWRIn9s8hMcaFzDnbZt9FJLhsztEl/HZM4eRK43wd499Qb0vcTi/kkEYpSN3S0036xKPnv7uinxCd64+qx0zzQgkJbNWXMB+b82UrnQpLk2a6KV+fylsYM7ZMpHn4rCB5W4V7fGkx1CxfCO4AwA19HGydNVkEy6Lcd6fxjM78wCAx8fPER2JipgfHr+MqjXELjX/cWU0gZGwMypkTbtj+ik+XHhWhK2H6Fq0D0wgmggwNUUG71C5harj42BhNWM4Q2mhHSqElMrgvJve3+fRd3zk4BZNCvNEoyLHw1dlSHpG4f3HX4TDYhNxE3GfQMkZ4flFNVPgjPCmsQumX2FpeguWCkBiB5fXqPdWuQJ0d3NM76cJ++lCJ9MjsCCxGecxMrTzgaGq0ccYChsjaZteic4S7ygTUnDuxA44k6a3UHZ8zFXaxineKtSSxG1VVvoPAE4CeAlU5b5D/bvBGPu7UspPv9bGt7VzkGDY0jh3PsD3Tr1kyiU1PkBHeHigSrVWfTPpBz8Gx5YoEoupoxSn1Hu6ialFeLT0aCgtTFhdozFtQWYi7OWoBpfFeFzRK8x8oIWqNcRhZai7Io8pq2Oi/hgcLmKlJa3KQqapqwyITB5A/f8YDC8rnYrl9RruPHkd82rCeiaXrSlTYz40YkEkyRgZAzXjtExEpp3iRlTB1WDcGL3NIQ1R7cmpKW7liJ5eJWOx+79ytBfKuHGgRn/nSLR+IjWVPZA5zNnkXFopOCigWT41rw6dm4YqwaVV9dIRrv6cPi+aYVeXV3zpIGS2ae4KyXFuNG1oyA8U1nF8YRkv9wmOeUdxRfUlnJQTkwikbQjkro/GMOl2cP/Yojp3Oxm47rTTQgxu6vfTzg7G7H5mAG0jqhgK90GUw7XuGI7sJQN3/OQKREppbCrXNtdHG/OByGFvfsNAONMzDvp8kQwnfUcv9lC1B8Y45nhoNL0B6jn0Rc5oSgBknBMW2Dxeas/Cs0I8sJeOezbfwvJoDNOu0qEQDmbcndS0eYzlUQ3xGh13flugt5tjzCNDfaC4jqo9MPBZzkjBrZdqQFftgdGD0PuiHQOQ9M60MyhZIwO2AEj57e7a0rchyr+tGtKLAH5KSnkaABhjRwH8IwA/D+D3AfzVdQ5Awk+zFDRwwruaobpuWH3clSdEkYvYsF4ClH6XuY8y9w0PUdkaYspKpZ8cgECmye2npng34nIG214ERd+6Vnp34aqJjgHKHNL9hVgyBLDgIuH84WpgTZd9dJbSlfSgxWAYiBwqOdqHFZ7MQgDAY6VXqJmn9jE9xwEAl4IJ7ERFI3pf4CMU+cj0KADC9zssRkFFvO+YfgVbYRETTsJw6bEAR5tUx37mzVU4813scgmvX7MG6LOcMWgTVg8dmTPH2Bc5PN3bi/tKlwHA6FekZy0afIDVuGJKVTFIi9loAvMRHJnMlMTg6IucMZSBtPFCfzeuD2p07p0RjpeW0VFlpfncJlpxwVBeOyyCL1wE0jLKfZtRhXoCV2hwctTJ4UMnnzX7rVFp2uFsxSW0o0SIh4jzyAEDlDGlBYh86eDk+JJpxJYsuh/T1BZaZyN933oIzTxHN/ZwPazjTJeChftrV+Cx0IAGOJNEjCgS9TnBmNnel45pCANE174aVY1B/viZe5B/Po/evgiP3EWou6o9xITTMec6x8MM4aDDYkTSgnToOEYVjqAmUHNVFA+GdlTAFzdpkGZvedNMjQOk09KLc6YUdHPWpJeQ3AzorYcVxJKbSewxh5Th9Ke1CNCtWPJWAZ++/euwdgwAIKU8wxi7W0p5mbHXd3C3tXOQAPY5lD7HDkOZByhDyx8SgkaXnbbUJPHX+tQsPpa/jllnBzU+NAa0I/IJzBAUwQxkzvCyzFrtDLKobvVeRehlpWrWOgLVpQ+iY+7DUdFuSzio8SFiMPM9rbiEptWFa7XVPnkQ4AYZtBpVUbMGZsL5SGUVBR4YmueWKBCfkLqyA5GDq9hCAeA3rjyIzYsNvOOhFwEAD1UuwbUGRikNoPLJXfmrxml+cXMfLi1N4PreGgDg0folhNzC42OkY/D4e85hOyqZ6eFQ2mhaiTxmR/VDlhT7LWcCC14yPf2n7eO4r3QFU3Yi3rIcV002AFAZrCvzWIkSsZ8CG5mmeSsuYDMsG6P4Un8On/3kSRRXlGbyAyEW7tkyZSmHRRnRJE8ZuK7Im2vxaxcehH+hiqrid5PzQCssZDILzoRxOFN2GxZEBi02ZbdMwCIkR5EHKTJBB4fzN0w/QYvapN8HdE8nySjTFOwFPsKYzTGbb6m/AwjJzHkcCQc96ZljmnZ20BV59JXxH4gcCjwwg3nn/Gns99bwtRaRRWI1h9yORE/CTE3r+r8uK5WtYUYjoiccyrBO0Im7sHscd1Q6Zh9zLIIAw64i/R0JC08u7YH9NDnl0ZhE8egO3r2b5FfHnZ4pnaWJ9YBEOAlABk5tQZrsAoAZfr0V6zYqK51jjP1fAH5b/f3DAM4zxnIAwm+8Ga3b2jkAME3OVlwwUTBAvQiHCZwZTZv3f3flHlx7hnhsrjx6Hj86+RWE0sYJpSHdl65xCAAZ9TIbmqiqI3PqYVIzA0qUJ4FwhhmYaAwiijOSjKBGsp+KPBwm4AvXfEY7HF1793iIJ3uHzcTqodwKOQsNJy0RImtZGU1fOPhC+xBOlOmYFtyN7KSy52PDi9ENk6neTuzhzHDWPHD6IddReRhbcK+5eMmhhvSB8gbuLCwlutUsxpy7lVBXI1bMnAThvDoax4y7gw0VkXsswry7YXoan1k8BGtB4M2VIZoqc+uKPEJwKNoq+NJBR+QNUshhkblOAEFVAaJZB4BPfekE9vy5DxYpLqZqAacPTqM6RmXHUNpwWGScj8MiFDnRUejjjyILxevM0IY4fYbLDzbg1/SUro8Ju2M4lbbiEs3N6LIjI2oNQ68hCVygz5uecdCOu6K0vk0pTN0TF4aTeGGHzv1jzYso5hLnYDGJMh+aHoP+jjT9dRqOez1ooG73sKmoT+bdTdNgB6hJ3hc5AwnNLXSxVSlgfn7DROXUk0h6FoG0ESp0mF4eDzGXp0wyqnG4PDbiPjuygAm3Y4j1VkcViPMlzH2CgguZd3HhR8ewMUX3y9qogp0gj7uqy2bifSQc1WMi43+uN4m6O0DDTeDVabndm5Fqf9FFaKXbhlvpbwD4ewB+FtRz+CKAfwhyDG95vY1va+cQpZg9Z5wdFFmAlkjKL0BSVtmOSogFR1SjB30m3zbaDasxzS2U+RA1a4AVBbELpJXoK4NKHRpaCdAN57HQ8AEVWYiO0jIGFMwUjolO5+wWWio61b+nufd1U3Y7LsFJaQZTJBqYOrWGrepM4ZQ/hye3DuCuKqEy9uTWMYydVzWh9YP7P+7+M5ybnMbqiI65HRdRtoYQYPjE8gkAwPXNGv7Xe/7QpPNvn3oFTz02Miyrm6MSnhZ7jB63w0fwhWvOTUsUAJE0k1d4DVN223ApdYSHhtJfAIC3zZ/HgfwaBiI5d1txKaPHoF/XDiUO66haQ/MbADWUdYlGconYs9CdVSiu+zs4UbluSkAAOYR009xhEZp21zixWmmA9b1F9GeUMeDAY6Vtc+6vB3W4LDLBgxAMLwx243SLApKHxy9jT24jpaBH8yj6WtSsATaicsrhxeAQcNT9pCnMJ9wuFkq033W7r2ZKVHahHJEuZWmacZ05XB42cbE7jvlSctw9J2coO5bCemaOpqboQg4VqHk8dmCAS4Mmvnp9Hp0aOcF93jrKlm+a+73Yg8cifKVNWXnNHWIm18LSkK7V6ScOgsXA6DAd593zSxh3ekZroWSNEFYFYKmgqpBQdQCkJHejX4GQ3PR7ypYPX9p4qU3B3lfP7MPCwrrZZm95C3sKm2Yf11Xf6Fas26WsJKUcMsb+PYAnAAgA56SUunHT+8Zb0vq2OQfG2ByA/wRgSu3YR6WU/44x9i8B/G0AG+qjPyel/KTa5p8B+CkAMYCfkVJ+6rV+oxUV8KftOwEAxwtLWHA30VTGoitctISH496S+juPvfPr6MyRYZ51tuEgxmc6dxht2+8pnyINAFVa2opL8FhgnIMv7Qy0dMrqYymom75AH0nzFCDjTxPQiv9H2qjxBALoSwcBOJG9KSNF7LHJZfGlg3l30+yDAM0jXItoEOs3r9yP3tPj8B8nQ3tkdhlvr58xvxGrOQudFYSwMO9uGorwq8E4Tg9mMe22DeRypthGN06GkPbn1rB7atNwBP36yw9i/9QGJlS9dyss4uHyRfObHguV6hoZrEO5G4pnivZhyqbodLdqUD9cvohWXMBZfyZBm1gk5KO3mXO2ULP6mFBgAS2HqoODrsijzIc46JFRe8eDL+HPxg+hWiaH9Lf2PINd7pYJGircx7WwYQxzDI6a1YcFYUShHpu6hCvlloEVj+d6OJy/YXoSN4IqbgRVUyL74vZ+nFqZQf6LFIl/8QMM1amhyTTLlq+a6nR918Iqntw6gIUSoZtOFK+BIxmqg2IM3uVuGy0E7fR1xuOyhGYdoCBgOyoap3e6NYXFyxMoHaV9OL/VxEylg+lJOi8FHmQc3NVgHHty6zivuLs4JA4U1rHWKGPOI4cCJIJFAEwpbDxH9qbh9DPqcywC3C5Q+gxt8/zd+zHzaNswpdpcID/dw3C+BgDwxyzUj24ayU8OiY7KdHVz3+MhQmFjVn1m/95VlB0fz5+hctjmZBG13QPzrH7y/DHcqnW7lJUYY+8F8P8FcAkUwu5hjP0dKeWfvJHtv52ZQwTgH0gpn2OMlQE8yxj7jHrv30op/3X6w6qT/iMAjgGYAfAEY+yglPIb6vtFkuNT14if/w9Gx/H4ngv4gToJ8QxkDsvhGO7LU/OwbvWMWhgAVNgIfengRPGaMUAei1C2O4hBRs8KBSm3aWPNdD+DnMCGajD+u8X3AADeNXUGby6+Ygx9Ky5gQsldAqQ9sRqXTCSp+yFhSoqyyAJTL9XvFfkog+/uS9d8x8mJJTx3H3C8tmLep/kNir50lKuNh8tivNCfxwstKlPsL2/gj756Et5kHz9x6KsAKPtIlyJIVW1oDNJfP/Y0CjwwVOavrExi6njbHOdA5IxGAUDGY8LpGMNet3oQ4AhUuzAGx69cfgS9r40jOEDGrj7Wx2Dk4MgElRre3jir1NqShnRf5AwBYcEaoeiODFLoLdVX8NDJS4ZGomb1SSFPOf5AWlgOxnBJUF/l/uJlcjg8NBoQ9xSvGIQWAENRrksVY/YAHg/x5R06D2c+dRBjiwLCUlPc7TLOVSZxd0mVLUUORU6kgADw367fhc5npnDpUerFHD50AzVrgBi6IU37XuZD4wRDJf6j74flcAwWhKn/cybw5MZ+5BSk+6HxK9hb3sJkjs79A2NXsDwaM8a9bA3BIXB1RI6/F+ewxmsZyGiBBzheWzFlpdjOIupCaVHTPZ9c74FwcaxMzf7O2zycvz6J6tfoNyUXJiADaGju7ullfPl9h+g3x0Z4y3jye5xJ3FFZQcEKjJMcKUoP7WBy9QgD4WJlN2XExxs3MOYMDAutWL41DWkJdts4BwD/BsBbpJQXAYAxtg/AHwP47+scpJQ3ANxQ/+4yxs4CmH2NTT4A4LellCMAVxhjFwHcD+Ar32iDiu3jHqUp/LmzB/H8xi68d4warTM2RTldIyM6yKB69L/nnC1jpANwQAKrSm+haXWwEVdMZlDgIc6MppNJThmhyEcYy1FJaNJpk1hPCnufXoEeLlO7oY08oX+SUpSL2HAtgZHD0IZU9zl0iebdY6fwluorBsJLiJ+BofjQJSwdjfqSo2SNTJliztuGMz6E30+UuEJJamEa3njJn8DxwpL5jfuLl+ALF7lx2ufLWw2c709hXlF0r4VV/KcvP4LKObq9hpMS5Tu28Df2kvPxbVJwC1TJ76I/iU7fQ3FdgilUVo/lUboucWovXYtd727hwdIlU2YaiFzGgdWsAWLJDR1EgY9QZkPjJPVn9LocTGSkKnW5jiPhjFoMxjFltw0YYCB1tkLHfXdhERdHUxhz6XvlXV1sl5L6/VRpgA2/BF5OGHK7cULx0h+58Mcl9tdaAJT+Q0rFLZDEUZTONmLJAJY4KE3hAQWKG4gcHmgsmoh5zCF9cJ0F5jgNwaV/YzkYw7M7NPTmWSEm6h0s+o3kONwOntnajfUuHdt7Fs7gWP66uae6cR4bUdncw0RbkkCj39I8Dz9ysPN2urb3jq8jBjdly17sYTLXwQ8+QveHBRr80wOtJWuk9D4sw79UtYcZudIxp48x9PHmaZWlRzlshiWc3aBJcTGRwGC/1XWbVJUAYF07BrUuA1j/Rh++ef2l9BwYYwsA7gbwVQCPAPj7jLEfB/AMKLvYATmOp1KbXcfXcSaMsY8A+AgATM1aeF+dnMFbHjoLAZ4hoCvzRLz9uXABd3nXzPuL0bgx4rpsoI11OVUDrls94zxWozLmnK3MHEErLOKnZz9L24sc1qMyYlvJhFpd9KVjZhhaIq8QMtL8npA80x/whZPpa0A1p7VGBFFuJJetzJMmLv1GAaG0MuiljaiCP1gnioZ7a9dwyLuBO/JUbhuIHP75XZ/EldGEoeDuixw6kYen1bDXmWvT2D5YxAcazwGgXkuZD42Dev+eU5lI8Lcu3YsDHxvB3qRIezRXw3LYwPVdVIOedFqwmDAw5BfbszgytYar7x5DxVFDjJJhpzAOt03n8nxnAo9XXjHNWyJjk9ibS6jKgYTvaSByGWcQK6oV7SwW3E10LM98ZiBy6AoPTbtjtBAW3E3EMpmq1trdRq9DKfLdWaIA5e5j13Bh7yQqNhlFj4cYs/vJbI1k4EyaSeJ37n4F65NlHC8tm2MIpWWOscyHsLjMNK09Rmgnfe6m7FZmiDKUNu4sLCWDdtJF1RqafdiOSjhUWDX33EC4aEd5nF0ikrz6WB/zhboZQAOoHHZi7DpOc8rS6mr/NWChavXhS9dAWzWs1TIZkIU768voV+gYDpduYCcsGmcyYg4m3G5mnsEXjulZXNhq4u1z58CZxKSiHonBEAobgnGzzXZUNKWs57dmUXBC3DtF97mYYvhPuAVLAvL2oc84zRj7JICPg3zaDwJ4mjH2/QAgpfz919r42+4cGGMlAL8H4GellB0Frfp5tbM/D0p9fhLA1zvjr3LSUsqPAvgoABw8npcLjpLwBFOMpAkb6WIwjk9uHAcAnLk+jb9z15M47tGD7EsHC9Ym+tI1Q23awGhjMGV10JWWGbRrWH0q86RmF4p8ZPocp/w5/IdTj+HoNJVCfmTqa6hZAzhWbL7fgjS/l6B7Uq/xMFNrX42qaFg9FPW8g9ACMxr6WqTGNrTADDcyn/TdMQp8hEjTI4RFwEtq1jVnB6tRFfO5TSPOMxA5TFQ6Bm9/RszA5rHZBqAoXP/m4+WzsJgwjjiKOeydAaSnEDMlC6PJCJFCeVwZTWBPbt3s42ONC4S7n0qG3lwW4ROlu3HqGpUFjtdW4IsEyXNmQLKf2mHpITlt/D0eoiM8Y6BacdGUZACaH4l5gjqJwVHmvmqs0/X0QL0aDWqgbJOb31gJa/BYZJykLx2cLF01x7Db2TL9Cb2P62HFKO7tyW2gbPkmQyvyEZaCBv58i+YqhOR4V/NlFPjIGF6ays8b569RV/pRrts9OIruRL+fU5E8kJSR0vQp024b33v0FAAgx0kFTped9OzK3vyGIeML1ayGrv8bLfAUemwkHFMCKvDAbKvfy/HIlHhzCqKqszjtJDXaaVB1TUlJ3/eciQwCbiBcDIRrHMraqUlgxsfDd1BZOZ1lfqvrNioreQDWALxZ/b0BoA7ge0G29b+fc2CMOSDH8JvaS0kp11Lv/zKAP1J/Xgcwl9p8F4CVb+f+fXd9d313fXd9s+tWoZUYY78K4H2g8s8d6rV/iVsE2JFS/s1vZf++nWglBuBXAJyVUv5i6vVp1Y8AgO8D8LL69x8A+C3G2C+CGtIHAHzttX7DZnEyUBYX1YQsRbe/dP2tOPPybtgdig4PP7yIMvcNFQaQNNR0xuCC2CChh9akgyILsBhRs86XDmYVHBWg8krT6ppUtmYNcHR6DbuLCWwwHeWbPoJaOkPopuYQ9L7o6HMjqmAtrBlKj6bdQZEFJtMo8yHpK6vS12JI5TJd791WWcQPTz0NgGYOrgbjuEOhuHxBDKoVu53RRyiwkcHOv//4i7ivdMXsU83qm6lmIMl2TE9i9hqef/txjJ2nfYo8DuYlNd/lUQ3z7ibqKuJeKGyhL51X9WveM3EK72ieMefWYbHp96yPyri0M453KC3TsjVELLmBup4bTGE7KJjG7F3lpQx81pERPB6YLKDIR1iPKhk9bqFIC/XyQJDPdC8pPcAYSgseCw28Vp8vnSEtBQ08szOPe8doav+gd8NkZwBpUF/ymzj1FaLbBgMW3raFBW/TSM3q70tLugIJpTlA5Updepxzt9BRWtRAMpOQLrkBA+S8UF2bMbzYnsX6gCLyB5qLWPC2TEkNIPhzmjgRIHbYSwMCIUzn2hh3kgFR6nMkn61aA4zZCcVHOy4YJBdADWgee6a0tdDcMr2agqHgZyZrMNeHh4alVzQD7JncymQjt2LdYm6lXwfwS8CrKl7fEmCHMfaPpZT/u4Kx3uzKJIBtAP+3lPLSa+3ctzNzeATAjwE4xRh7Qb32cwA+zBg7oXZyEcDfAQAp5WnG2McBnAG11376tZBKABnnrkhKQudG09gJqQR06bN7MPdchC6BcjD79hZmnB14qdq0Js1LD8ikm9a+dBBKG7+1+gAAoJHr4y21s+bBmrWJ90Z3CPa66/gbM18yN7kFaWg79AqlhaaaaRgwG33pohUXzY1et3twWWz0mX/p9OMIfBs/e5L6GlqzOC0fOhA5hEz3JGgIKk2bEUrblBV0r0GXhOpWD4iR0aHW50OXmZp2F2U+NKWIUNoZYrubnd5D1UtY+/4yrmxSU7OU7+B9U1fwpgrRLxQY8eDo7Rajhur1+GaKuml14LEAC05SshmkKBreWn8FD9YS2gcq1zn47aV7AABbX5uEPWCwHlR64N06PjDzIk7mF811aMVF43T1sT3XmzclkFlnhyhP1HsOI2EffW41uaHethvnUXZ8M33sshhFHpjPl60hHh8/Z+6flXAMM86OMZwWo2ng3AHap/BMBYu9Bg7kE91qXUYyfSpGDVwtZeoookXdmNfQbO3QOrEHL2XbfJkMYALAn149AvdPqvAbak7oA+uIvW2iLlHnumr14bIYHUuBB2IPf7x8DGvnyTnccWIRe0ubiBSzgCZsTA/OhSJB6OnyU/smqhftfNpx3pDx6b5EWr8CABzVp6i75Jjfc+xlVOzhqz73LS8J4BY5Bynlk6of+0bWNwPYOav+/8w3+K4GqKR012v94LcTrfRFfP0+widfY5tfAPALb/Q3YjDMq4nJ50YTEJIbzLk41kNnq4ThJBm6OW8HRT7Csz5Vrva56wlCJXXTWpAQyjg2rT5eCSZxqEwPZ8EK4PEQs4oULqH6JqPaFS7qVg81FbWvRmVDfwEAM3YbXeHiXEjwyc+2jxjN208s0rzG2+fO4Xtrz2NV6QjbdgyZSwTS63YPU3YLr6jjcFiMw7mVTBRnKX4mgAxX3eplKB1EavK4FRcQwspoPgfSgkCiHlfkI9SsgWGTbYmCqd3rlaai2Oeu4SO7nkRrOqFT1xmOPm+htMzgVdPqmEhYCwD5wkHF8k3/x2ERWnHBRNB1q4eBTPibOsJDKG0UFInidsSQ25YI1IN8sr6kxIAS1leLJUZVR9pfWN2H0i46bj1dnu616L4KQPefkNwY/8vDJs4NpvCocoKB0hhJN5inlFiPPi+aDgWgTGPM7uOOSXI6L75QxcWtcTzWcAxEt2l3iWL9Jv0P3YjXyoZFwzRcNbTceg1EDmshHce404UFae7l4dAFLzCIkxS1190+CjwgqKw6DwORQxfcGNyS5WO21Ea0j76jYAe43BuHrd5vul2j0aCvf4GPzLUIpYV2VDDTzw6LsR5WcKlPzmYy18GAu3B4bDIB+o4Am1HJbDPptFG3Eyp7h8WZeYxbtb6JstI4YyxtoD+qeqavt/7CgB3aP/mH6v+/8Y1+gDH2unwit/WEtARDW0Un+5wtTFhd0zz+X078MT47f8REEge9G2jFRUOzEINj1mojSMk0Euldcko24iJacRHHlSzor157FC/mdhkNgAV3U01lJ+WYIguwqidsrQFWojHzIK9EVTgswpkhXdNPfepehLMB/uf7nsA7dxOT657cBrrCw16XSjof3vdsRsp0O6I5iSc2iC675g5xeHLFOCCHRagw30x9z9g7EOAZfqe0MI/DYhRBg3llJLxSFiSeGhJ+P42z139vxBUDF96Iy3CUmBJATXA9V6JXemr3ZqrujvBQ5CMshs0M8iqQFr7apX34zNIhLIzt4EOTz5hzCyRw4VlrBxtxBe+dosbql985wNOn92J/hYzcVI54j9JiQEFKea7Mh2hYPfzEnqdMGYh0NpzMsXspZtDlsI6vtPeh6tC5nXI72OVu4fKInP/10RhWBlU81rhgfsOXDrhMSqGbYTmhfFHlovkCRdpnTu7gaHMNBT4yTiDNiaT/X7d7CVGjDNCLPWjmqnODSUzlOphVjeWRcHAjqOILq3ReH5m8jDlvGwVluE/uXsL6eBn3NBT9ireJkZLpTM9SOCw2LKoOi/Hw2GWcrNJzshUWkeORQbA5PMpk53W7l8lEtDaD/n7BOHpRDst9uodfWp/GZLmHI9VVk2VwJtCO81gdVdQ+iAytRyhs+HBwYUDXYhTfKlPHvhm00qaU8t5v8ge+JcDO6y3G2EeklB+VUv7H1/vsbe0cBsLFqnoo5uwO6pZvbrhZq419E+tmOnk9LqHCfTRV5LEaF4xjSBTKLNT4KFOq2ueumSns1h/O4Np+gR97N2VyLhT6SD2oE1YPAXhSYw4b+OT2nXjrGGV5C84GlsIGXuqSc3DbDNgfmrQZgCp9JZwwh7yENRRIpEXfPfGy+duXDho8CQRiMGOYu8JDg/cNB5V2EtoofrF3CBYTOOKtpHSDbRT5CKf7tJ8Pli+a+Qr6zjwNsql9dBCjwn3jmLUhS/cwZuy2cZp6tkOT6L042I0Hipcw5yT8TF2VCWj0yeh0DadmCnjHOJ3LiuUjSPFYtUBlCM02+sMTT+PhsUtmH+t2L1Nnb1g9rEY1FFV/QPcepuy2uX4cpBHBbxJb0tnMrLONhXzNoI3KFmVI10GlsScuHYR9uoTGe+k3Hqj62OeuYVn1RSbsToYRNZQWXBZh2m0BAH5s/9eMg/JjOvftqICNoGyM4N78Blpx0Vzv60EDHzt3P8oFMqIfnHvJyHzSPg4xZg9w1zjBZzXsVr9/pLyKN9fPox0VzOtpShGAnpNRCv2T4yG6oWc0I+a8bYrqFWVFOmvQ51VIbkj0LgwmsDu/neknbIdFLF6jzKHysouNaAwXj0xj/yF6Ht49eRqhtIwDKtmjDNGexQSW/Dq+cm0BABBsZEtW39L6Ng463ErADmPsfQA+KaVMD1y9Yc92WzsHj4docE2kRka+YDSCGRwWwFc3S8PqE7Ge4eqJaO6ADxGo5u5iMA6LSSPnGUuOliigr27i2ANK822TDgOJ/oL+90o0hi91DwAALnQnsO0X8ECV4HQtUYDDYlzv1gAAfkPi8YVLWB1VcblHBqVgjfBw4UKGmrovcqakw5WwypsKFI0uRTVFuZFMfq/HpUwjdT0uZ8pAy9GY+b5ORMdymTeNI43BUMv18VjlnDnPN2tX+IJ4o+hcc3SEZ5r9G3EZobQzGtKLYT0TkW/EZaPvMFVuYz0ugwvHsKzq2rqesl2/r4ySOzJlgt9aewBle2SEdO4tXUExxU7LIdC0u+Y3delH4/9booCm3TGvEyutByDRutiOq68qnwGJg40lx5H8sin5lPmQZh+UkZxttIHH2jhYpOfdYwGWwzHDh9QOirg4mEStnJRT0s1mQNF+Cwef3SYmgKfP7oWzYWPmXjovs9Mtpb9A27zUnUV8oYT+Id08zmPG3THlN1+6qNoDHCkmJIsWJBzl0PfZHfjSNcSO21EJfU5T+3oORuuJ6yCAQ6Bu90zvQhtpPXjnsAgeD820+lpUhcNinOnR3MSXnz4Me2KIv370abN91Rni+H6CnZ/JTyF3qgBWjAyT60C4GLP7hm5FL32PCjBM5do4PEkZ+CuYeNV1/Ast+e2Fst5KwA6ogf3vGGO/B+DXpJRn30jGoNdt7RwIXaTEXsDgQGTEPUh6Ug+guaiwkXEOgJ42Tk7BrKIz1gZhOR7DSjiG/Xm6wf5kf4i5vG+itL50EQo7Q5rXigvYDMhY9CMXE4Uu9rkJlbXHA3xojrD5l8ebeKB8GWthFadbNIQ0UmIzaSRVkY/MhDQk6T/o7CaWlP2YKJ2TQ3lesZNeHo7j++rPJbKQSu9ZZyIPlC+hYfXQiosmc2hYPcUJldB8pPsyxgiaxrtAV+RxbjBjPlO1+ol6HRim7HamlEUUIZq6PI/d9g621ACf3kZIbgauPDvE6Vfm8EqZzpNzLg9pAXOPUinjUGFVUU/o688zTfRA2oglTxT3mMgQ/WnCQ/8m5BjNGMTqG4n3SDsUbRx1tnJxNIVxu2P0Gz686+kMb5E+V1C08iGzMBJ2gsHn1DA2+uCKdv56VMcLX6DZh8P/eQcQwAWHDGu7eRljdt8cl80E6ic2sLdKvZvduS34wjGGehQ7JsDQ59lBIqijxaA0iqpqD9CO8yZwAMhhcCbAVfF9MyzjynAcNYeegwN5UuhLazTEKRGjAqfSV6Qb8SOGsOdiTU0/78rtYNzpoVojJ9zM9XCh0cS+6ibyVqIzHUrLPO+D2MW53qT5+0iJ+LFmCpTV7drTwgXconXroKz/GcDjoN7EdQD/AsDjtwqwI6X8UcZYBcCHAfwaY0wC+FVQY7v7WtsCt7lzIBK8BLUDUAYBADkWm2xCv8+ZhK9ogwOQkIrFREbpzWMhnujeAQD47fP3QAiGnzhCY/0fuu8ZHCssJ7+vJlf1b9T4AI4Tmant1UoVRT4y0YyOODWx24HcqjFOPzxLtfQ5dwsdkUAPa9aAEFXqQewIT4nIkzPYjkuwmDDypwAhe3Rtdm9+MwNzrPFBBupY4T76ImdQO0BS0tHGPw0x1ecyzVPVigtYChr49y89TuexncPb7z5tjMW024blLRsa8hofoMYHaKUysC1RyNKfq9KTRt0MQhcsH8FWE9RxXsIaMRyqJBPSN1/Lm5vJW3EJjpLO1UOFuikeSIua5lZoykaVlLYHAOMY9D5tRUTRrUsuv3/9BH547lnzvnYM6Qn4QFrGaJb5ECfK1zISnwI8GdSzCZnWjT3opE1aFhhiIGV4R8LBSGVx17pjWN+sYHeFegy60ZsoC9qYsVvYluQ0SzyEyyLk1P3QjvOoWn201QR2joekJufuGEc7EC52woKBmhasEXaCPPYX1s13TOQSkEEyMU3nQfcq9hYUeORhhpl8G7tzCaoplBbOtMkBbo8KuG/8KkbCMbKfobRwdTCBC20qPXl2iHPnZsEiehajExzzhW2c2aFgojvKMr1+a+uWoZU+/HVe/pXX+Pw3BdhR23RU5pAHUXd/P4B/zBj7P6WU//61tr2tnQMDUFcp/EhSdqCdxEDaKLAIK0r/ucx99IVn0Ca/u3Ev8laIN9fOGYOkp0+fbRHPTPFPS9h6MKF1flP5HBpWDxuKe+nMaBZLfh3Lfg0AcE/1Kk7mFw3iRuPd9fdraKzONDSPDlGF02d1/b6IBF2k+ZYAingdFhvD5Vu9rGMQDkJYOOERln4jrmSMnMNiXBpNmkjxuLeEGh8ggJVkChZRn6dx+hakMWId4aHCfXx1QE1NTRQYR6qssG3hieePoXxBOeIHutg/sYl7xqjJecRbMTxFdG2GWI1qqFl9hKlb0peOcWyPTlxCYTowUfjnmwewPSwgr3HtkmEpaMBxk3PRFfmETkU4GQd3M7SR0FDFjDPfEiVD4w7AzHJop9mOi+gKkWR5VowbQRXlPP0Oh6CeUKo+X0nh+beiUma63RdOhqHXFw586WKft44H3kS9li/VDsDqWjj5IMXBY06fmrO6RyA4cpc9PLtNpc3Tc1O4e3oZd1WW1Ln2sRImxHoui7ARlTGpZk5CbmE7LplsaCMqY9zuYSBcY9Q/feMI1lplfPCgEpzKr+AtjXOmx1C2fKyG1QxEVqsHAgTHXouqRmb0YH4V21HJlAyn3RZ2oqLRlJjwuhhzBjjTnTbOgUPixc0ZbF2gcqzIx2g+ZSEsk+FePVDBfGEbTDnRovu62jZvfInX/8h3wmKMfS+omb0PwMcA3C+lXGeMFUBw17+6ziEGw0AmmYHDEjTK5/pH8FRrL35kgspyTUV9oaPdMxuTEIJjIb+FmSJFWaf8OYyEgwMlioBO3T+H/XtXTVMYIIP1RIvofz/51AnUznCERdqH6g8NsdfdMANoxINkmUDj9GgXNsMyThYW1ftDgAETqcE8LUWablKm696OaoL7qsxUswYZgSEAaPC+yWbqVi8Dp+UQ2ImKhvRMU4oH0jKwzgnVw9DbeCxMylqA0cD401U6D5u9Ij5y8IvwCvTwF897yG8CxSvkJLuXa1htLOC/vq8GAPhyeS/e3LyAO/JUU9YDaURxQb/z/GAedbuPaQVdnXbbOJBbNeWTkuVjJBwDyYzBccBdNc5Ao7K0Ia5bPVwOJsy1WQnHwFlKtY+RIQ9S98jNMyMNq4elsGH2oW7ToNcLfQomrp2eRmdfDgv7KSJ2WZQpZYXSRisuZIbJABi6jEHk4oHGIsbtBOVFTVffaKFP39eGkAkbqaaU0JTs7509jY8dKaL8JYryi18u42t3H0HvYXL0D9WpDKUbyoGSvdVZQc0aoBUXzDHrXkNX5M09M57voT30EqoazbGkoKhn+9PYCQo4UaHr6/EQFhfwoZFWRPKoy2cbURk7YdHIgmono4+xHROH1R3lFXN9B8LFvRNL+KpCDvmBA+FU0D5Cz829Y2uIwfHYBPHODWIXX8ItWLdwzuEvYf0gaKDuyfSLUsoBY+wnX2/j29o5OJl0ncNjMbrqpv/E8glcvTyBOx6mhv6CvZVBFknJUPJGmM9tGghmzRog5sygTyoP+ph2W8bANK0uFsNx0x+Y/DLD2LPr6B2h6OVydxyoITMNmuZSmrJbEJJlZg5cxCjw0JRYqqqhbLiRWJxBVHWFhwGypax0ltsVeXSjPDTn1JaKhvXypWMG4fTqq8wk/blWXDQPv2VJbKUmoMt8CC4Ejo/Rue2WiMCuohAyw3IV+S0gHFcIEQYMppm52Vb/ZA4ff7SE/UeoFzNltRFLDouPcGFE5/b3ztyNeq2HH1sg5z7ptBCDGTBA0+7gvD+Nsx36/Hiji5YomCzJYsI0luk8lOCLZOZgn4IKJ0g1jlCVdPT11uy3+jeXozFDNw5AocoYAlWqlLZEb+AZziEhObgjACRDcZo9FiA01/O93Tj1ZZqIHn9R4mOP7MLb7qMe5HPrs3hg6hreWXvZGOvjhSWsRVVzD+1ERdwIqmYfduV28PieC3gipAa29yc5zD0R4MUqkSje+yhllOkeEoDMrIUFmWnkUz8mQRw9VL+Me2vXTB/Dl7biS9L9gGRyHiAHprMGABjByZAJhsLGtWHdSHkKMHRjD0/tkDZDI9fH7vw2qtbQXK8ci8AhUcurXooT4cYdZTTmKZiY8VrIscg4TT0fcSvWbST28+Ov8d6fvd72t7VzCMFNj4FDIpbMNJg/OPsCLtebuL9AE+KcSUDCaAq8c/crmMq1VeRN23gsxKyzY4R0juSXlRIc3YBd4WHKbmNvmSLip6dnMcYYSmfIEL9yegZbMyVTIqrxIXxpG2K+vsjhwfxlnFdDcFN2Gx4LsJJ62JeiKkIk0auvKDx0KevCaBIvdubwUI2Oa5+7jkJKQKjMhzRroT5f5j5ihS4BoKLppA6+GDaxz1nHcjSWaATEYxiInOmNtAT1ZvR3WIyYSd9UpmGvrbiEWDLcM06R4qfmJiBcG90j9H2V8Q7ubK7hpRvUsI4aEnfUN42B6kuXyjkp+dOxKp0zXb8XkujORapUAQCrPYoyl4r1jMpbKG3S4tCOnw8AO3Hcuvm8GDTV5y3aniUaGABMXwog494V+aRcCA+nh7vw9JoqQ852MV7qm+y1avdR5IG5lh7XjkfNVlg++lEOTp8MXnF1hNrpHNaO0zGdaK5gJtdCJ/bM/eELJwMt/cr2Xpz9wl5oZvLZEzfwcPMyHtpLmcYzH5jD4Kky3B3ap3aUR9VK5lYqfIgYiaHuxR7G7L75ez2oYHduC+24kJkhoOOn/f7C1gFc3RnD2+cI3ba/sIZDhdUMrYiQibxu2RoikLYpbQJA0R4ZdoPD+RU809tjiBp357cRCgubooSCKiPmeIiiPcL+SkLo11nIYXuHvqM3nUPBDZJe5C3qEwC4bTi7Ffvq/wZgAhRCMgBSSll5zQ3Vuq2dw0g6xjkUeITt2DPTykdzyzjuLRnDHkqa6NRDVn+t/hRaIo/VqIZfXXoEAE3RvqPysuHnuRHU8LbyafN7obSxFZfMYN2oQXeJzNFNLkuJ+hpAWUORhRgoo3o1SARwADVta3dQt3rJTcwsfK2/z3zH95RPoSUKRqf4P774GMSOi8OPkeF2clGmpp2evgUSagvNOeMwgZbwDE3FhqIhBxJ+norlZ9BFFiQWg6b5nKa01gNhYWTh6c4hnNkh7vxD9y+i5IwwkVMDaG4n03TFNPCexksmyvdYqKjGk9uxUehneId0xN5XhsmCxGZYQhiRAVoflRGXuWlIr8YVYmpVx/+iv9toV+trtBWV8IUdqs2vDcr4ibmvIAbLQG4zzX4GeEya87IRVfDZ5YMIP6WEcu4O8KG9LxgjWLP6Rk0QUNQVPMzMf5ysXMPFh2j7nfUmmABevkpO9OSeazRDIPJGYyJkNgaxY+r/Ly3OYveXIrgt+o0L1SbuG7+KA0XKjMb39fBCbReW1uie7kQeQjeR1w2khbWoagxzwQoMqgggw74ZlbETFhKNCFU+0vfser+E/qUqLoxR0KPptzcCcmAuj3C0sGLAAa04B85kUtKzJA4V1owz2YwqmM21DO0GQAp1oeSm9CQkx6TTMRlBO84jZ8fopQbUYslNsNi7lZPSt09Z6X8H8L1SyrOv+8mvs25r57A6rOCaGqSymECNDwx30mpUxanBHH5k7Kvm86G0zBDcolLjuh7UceUsoSKu1huoHh8a9S9tHPRNW1eqblp9rnoeiKt5XHs3PQRvPfoSdjtbxugFIOI2XZa4EVRxdjCNg0qf93DuhuHF0Q9OR3h4rjUHV9F8311YVPTY1A8QIYc14NgJU9xJIIcCUAb1UPHCTfoPljFwlhRoxQX80RbRqrSCPA7sWsXnO4cMp9Bxb4kGypSh3Y5LmHV2El3iaALrQQWH81RW+p2le7G0OA5nh26nh9/5FI4XlsznF9xNBNLCHZOJZKvHg5Q+dKTQSwX0BQU1+vi1w2qJAhpWD47ikBLg6Ec5vHUXZS8H8muEyXfUACNiCHBzHjwWETV0CvLr8RCPqAzsBWsOHAKugtnq1U+JCq1FVcw4LeM8QmlhGDhQwB+wnoVenMO0S9tfGU3gqt/AsSIh3IoaFpvKAsbtDr5nlp7djz1URfmFHMrP0/1yfbyGQBxAJDh+aPoZsz9Nu5PMVlSHiAoVgNFxMy9G1R6a5u7u3DZOW9OQ23TceSs05R99LTbDckYMaCByeHKLnOa59Qkcm7qBzWEJVy+R8T90aBlvaZ5PQA2NG/j8TBEXN8jJ3VO7hhyL0FRoplDQcF86G7ZStZkYjLRTVNbYFzmEsYUzPXKSE7kuGm4PobAMjHwtqmIkHLzSU2XFXA+PTF9GYVZnFhEcHr0KeHArFrtNMgcAa39RxwDc5s7hu+u767vru+svdUkG3D5iP88wxn4HwCeABP74eiI/et3WzqGR66NhJdqwFiRWFQJEgEOkehAEpYuMWMyU3cViWMdXdxZQf4nSZck9PLNrHnfMUO18Ib+BGIlSW1d4iCXHQzOLAIBPP34Um29z8I7DzwMA3lk7TbMOKaQRQVUpKht3enhybT/2qAi9L3IIpIVnB3sM982Cs4EPTjxvyggvD+dwyLthvvN/vu8JXPKbeGuVqKxjydHgfRzxKIrXhHSa90jrWPdTJaIiTyaLKw7NOTxaOW/KOl2RRyy5QbA821/A2c4U1lR9/x2zr6BqD7GpYMG7Si3su2sT3VBlCt4mijwwx+CwCBzC1O71TIWB5yqKiDL3Tb3/wbEr2O+tGujx6eEuPFS6aLKNUNq4r3LFiOD4wsF2VMQZnyg/DuRWaaALybW4NqwbhtOyNUSNDTCwaJ+/f/wZ9AUR+enfEOBoWD2cCYnad8mvo8x9U+//4vZ+vH3+HDanSuZcav1kAPjlU4/AeaWA9XfQ+9838Tw1vtV5dhUX0L4c7dM7jp7BZ9dOGIDBgXILU14XudR08ZyzpWYtlJBOLkB/yoK3QxvJgKJ/XW6pWn08On4JCw9SiWbabWei6RrvoZwfmowqVpQyZ1YoIi98uYgztTKsETC1RNfvUnc35t7cwpEiofjm81v48NGWybDqdp9mHZzU7EycNz2LZDhSC1RZBDZIiQcRbYlU94fAmN1X90nSpxjELi62KFvJN0IcLK6a4x4IFzeCmhmivKUZxO2TOVQADAC8M/Xa64r86HVbO4fCTQRyNT40N1Qlt4Qpu216ELqOuq1KPB6L0LB6GEQuKlfpZg3KlpnaBKjR6rLYNOf0pO/76+QM3v0okbxp9tKaNVCDXPRbZR7gWlDH6SEZl+dbc3ho4oqZNr0cNHHcu467C1eTGQM+wqyzY35zxiXa6FlOxn6fs45DuRVTLtG0IJqtdCByaFqdhE6D+9gSBdQMpxLJUD5UuaTOA01CFxUVOKBKOQx4frgAAPjqxgJWTk0iLtDDnZuLcMi7YfZxobCFY4VlM0egm97a+Gu0ltac0DxPoVEQo/c3okpmQtkXjmkgn+tMYp+3bur3f946gqOllZQxyGEkbNOn6KvpZz3QNuPsZPiVfOGiq9hBAVVChMwMofmSYzWqmXLHw2UydppYz7MiTLtt3Fe6ova/jMvDJsZSKKnSdYnlntLzbngoO0kzuBUX4DFhhuIaTh9yl4+5CTLkJ6tL2OVuZYgXByIHi0lTGnrnzCv4nTcX0B7S+/fsvUa9NeWAOyKPSaeN+RyBJpzU/UzHqMn0lMWTAiPpoFhQE9e9Aqae6oGNQkhL6XdPVtEOPeMEq9YQ7TiPcZfOU46HyCndCEDND8V58/kZp4WNqJwl47N65lrF4HB4hMOlBEJO+x6Z7xRKC/3+CUJf5a2QZEM5PXs3ghqEZFge1QAgI3v6La/bxDl8x4r9/GWsrsjjn73y/QCA9+46jfdVXjB0GbFkmLNbhmaiykcYScs4C02jMYpthGU1PVrjKDmjjLEXacoFCCVFSneHp5BB2rhZkDhg97CkuJiWohrWwho+9iLpQZRe8LD9zgL27aZmYdXqo8yHKGBkDGdfuiiyAD6jhzZNRqeXlcLnh9JStCCqUcuH8Fhk9ikAURcvRzWzbcPqmdmKlijglL8LVWtoovaaRWiVIx7VynO7QjyRO4LZQgsAsCe3Dg5hUDuH8yvY56ybWQitYaH/1iijfirq09EhACOw4/EAYUzb9OIcPB6iYlET/AenniHoqJ7fULBHjdffn1vFLtfB1WDcHENaU1wPm+kexgA0B5G+tnrGQRvvAhuhbA+N0QqULvJ+j3pGZctH0+6YCLhu9TBVbqOjPn9y9xKeeWwB71Ikd6G01X+qD8JDuAqqDAATbgfvOfSyMWS73C24LEYrLmJWIbF84Wbuh325NfyPd3zO/D0SDmrWwOxDQ/XJEroMnoEsJ9eDHPlaWEUMhgMNym5fnq2juuiAuxZ6uyiw6hwJUXV8c/1yPERBWoZ7qR0X0bS7Jtuh32UmKOrGXgYa247zGa0O83ylKDv00sdRVYGY7pMN4hwcHpn+3rTbwiDOYVVRcrSj/Ku+6y+8bhPnwBjbBRp0ewS0118E8D9JKa+/ke1va+ewPShi/NOEAPr0uw/jfZUXjNGnFNQyN+C28BCDw1V0JFU+wlJcwLumzuA/PkYNaVkK8RO1SwYuuR2XiFtHRcAtUcC8vWOyj9Mjygju9yhyDMBxKkhI7crcx6TTwp3zZByWxqp4ZPKyiUR329vYEkVMWR1sqXLYRlzB1dG4mUXQ5QO9hEJd6TKAZ/WwHFcNKyuVwaRxNg4TGAgnA88kA5g0fPVAkiYc1Ip3erXiAt46fi6jRqaHpQDgztwyAnBYKmOq8hFeHM0m3ENWBxakcRaaq2kxJEP+R60TaDh93FW4ZqCr76q+hO24hCmLZk4Wxbg5fgA4WbqKhtXLUIM81dtv/n0gt4ZY8QQB5BRFCgqrAwB9HoNURKozqBA2YpE4mCIfwUFsym1Nu0M00dCDd0W4bGiM74nKdWA/TEOavju5J7USnS63zDg7qFkDE9kLcBRUmTLR1o5VxqFmCrhAxfKTmQFuZT6v9cT1eYglzzhZITkCaRlAxLjdQVfkMeVR5vFMU6C1Nwcmgc030T1Vqg3x4uYM9qsgZyBcckC6TASGQNrYURokBUXcp6/tRlSGxyIIpKCxPHEKOR4aWnNAQ2Fp1scIJQVjxPukJsMLVpaVdSQcjKSNUzvU1F5cagL4XXzL6/Yagvs1AL8FGoYDgB9Vr73jjWx8WzsHbgn05+gmun9sDS2RNzMFmnfp91r3AQCuDur4yckvGEhnVzqYsHq4I7+En3zL5wBQ9HQot4KG+o5QWqQ1oLapWz10U+ItNatP8okqJbekxJTdNdnKRlSBLxz83G5i3d2Iy6jxQUrAJkbT6qIl8uY3uyKPo/ll7FY9gxhMGdak3OUihpUqE9X4IIVBdxGwRN7SkgnaB9A8N4kyXM0a4IC7ihBWitbbx4Vg0hh3X7r47OYhDCP6zg9Ov0hRsqJc6MhcZpJ7JS5jwdnMZAoxWMahaf4mgKCu4w5Fy5o62xcuDbIphzKj0FJprqw0J9R2XMK02zaOFyBjnqYup75GIhuZZtct8pG5LrqEs6WGv/RsjO6NaKcYShu+tA0VRVonAwA+sXQn2s+PI3qMrt29tWvYjorYk1tHes2qa70cjcFhMRYU3LYVF9EVeayENTPD0VfT8zpb8VioCPoSSndfOJhVjrwTe3BYZJxqN/bg2YlsJ2VLLiyWZBNFPsIBRTb5rodfwFf37obnRHj7GPVGXtiYRd93M1P5VTW7AFAUf34wZTQU9hU2ULd7xinq86Xvr6pNWYCZQVH8V2lDH0oLXJX+AHL27SiZQenFHlZHVUzl6J7MceLm0pkoGySlvm913UZopaaU8tdSf/86Y+xn3+jGt7VzmM638ZPv/HMAwL2Fy2ikoKwtQeP9mhv/QrdJ+r9CGVHFceQLFy+0KQM4WFrPDFkVOEVYumRT4yO0RA4LinVzO6YGZMv0MUL4IpFd3OdsmGE0AJizW/CVMQeSSKnMffMbHg+wYO+gbwbz6Pu14eVMl7Z0cy+Cw4TJmAxlh1oxOJWdtE6CzOM/XHkzpotk8P7W9BdQ5COUeWCcWksUMpPART7CWq+MzRtUO7/RqOJk/krmWqRLHX2Rg2eFxoleiiYx62yb5nArLmQEiB4oXsRGVEErLuCJ7aMAgOPlZdyRX0oNUtlKoU5HpwIeD4yBjyXHZApmmqaEAGAifC35Scfsm5mWmFOW4VhJKWMjquCrnXncV6FjnXF2cNafNap866MynrywH3fNU5b+/okXldQpDVG6VgxhJ7Dcr+0s4PJOHT+yl1h57ypchS9cc558VRJKn9OtuIT1oGK4jnzhKHlbZUAtyzgIANgWJSy4m5m+gstiOKmJ+5VwzAw49kUOfuwm9xOPsRWXTJR/pHAD+/esk1a2mjGpTA8xSjG9kuN3M2WiPz17FDJQ5baTfVTtgWnkeyxEgY9Mr8WI/qjnQTfF9T01kDlcGYyDM4n5PJUZtfHX214PxnC2PYlGU4l5xRwjYeNYnfoWlWM+ruIWrdvHOWwyxn4UwH9Wf38YwNYb3fh1nQNj7O8D+E0lVfeGF2NsDiScPQWiqvqolPLfMcbqAH4HwAKIkvaH9Hczxv4ZgJ8CEAP4GSnlp17rN1wWmfLL5WACvuPgsIq6XMQIYOEdRYL5HveW0LT6uBBQM/HTrWN4pHIBA5HDw2Okt1CyfHSEZ6JNSzK0RAGzqrQRKsH51Zhu+imrj+04MdxCchRZiKeGe81vzthtM6g3EA5isKTBrbj7icwtVt/ZQV9x8ACEqmqkCONCyRGmFM18acNCaAxhWn0NUPrCcQVTavivxYp45/QrxmnGoGPsirxhTdViP3rw7kY4hg/NP49wNxlqPQeiI71QWoYQEFC0Eikn27B6BrGV3i99DOcDGp5rxQW8sEpoo4rjK+dAt6jmStJDcGA0jKdZVWftHbQUsyuQEO0ZTWq7Q9mBqT2PsBiMG8TVpNOGwyK4LDYlp6bdQd3tm2ykFRfw8cW7IdTk7qHxdTBLomCH5jc5kvPw4/NP4dLkhDnXFweTKNiB4SAyNBoyKSPRRDz9vscD1NDHscKyQfJ0Yw91u2ey1QIf4fRwF3oRfcehwmrGMej9Tq+q1c/oW7hKgpWOmQbYPJUtV62+6gfYRvGuag8yFDFaCEo7Zo+HcHIRmhN03vZ56zSxngKHbEYVc56adgerUdW8P1B9Fa0pPePu4KmdPRhGDnZ5ZIbK3MdA5ExQNe508WjzEsYUOmk9qGAkbMyrQbqK7eM1jck3sW6jzOEnAfwSgH8LcmlfVq+9ofVGMocpAE8zxp4DcYF/Sso3xC4SgfRPn2OMlQE8yxj7DIC/AeDPpJT/ijH2TwH8UwD/hDF2FCROcQwkZvEEY+zga3GWC8nwpy1SaeOQmBvbwkAZj7rlYzv2jGGeUkZTR6s/1XwSQnJci+pY4BrJEeHJ3mFjtHQz2ET1LILHQqNbvRLnEMBC0UzQCmyJgolmnxvuwX35yxnSuiILsBhTn+RT7XnM5lq4K3/V7F9L5OCxKFGTU2I+elmQ8FiUcQ4xmPkM/c1Nn8RhMSw+wGJERtJiAg8ULxlj4CBGw+qjpXQeAMAX0iByAGDM7mO3s2UyngCWqWUDZOQsJuGmSlWhtFLDYrFp5ut9aokCnh8sACCnXLMGOJBbxd8//Dm6Xk6byl8smcZ2WISalfAeAUmvQDu2tO51WnNC6zWkZUhJ9U1Neav9pWNJROkfr5zFVpSQ0r1p5rIxartz27i/umia2pxJFFPCOxU+xJ2FJROVO8UYxfIoJbxD4AZ9DFrYR/+epaaI+yKHP1il+7zh9fFI7RJyLHFIG0EZFzp0T81526hZLDNtnu7LAIkGNEDPg8dCOFYyPOqxEGuKhFEPD8aSGdiwyyIE0s5MHWtmXoDKRn/r2JdMpnFhOAmbJ1k8kET+dO3yyhmQA5x3N9GKi6im+J7uqKxgIFyTrXSFp8AiGmBCv6UBClV7iBtBFZcGdF66UdZhfkvrNuk5SCmvAXj/X3T713UOUsr/N2Ps/wPCyv5NAL+kRCd+RUp56TW2uwHghvp3lzF2FiSI/QGQwAUA/AaAzwH4J+r135ZSjgBcYYxdBHA/gK98o98Q4PjgGOk5V7hvEEkAoZWoNksX0uDEVZ28q5qyh12jygdfWnioeDETfYfSxguKDO6txfNYD0tYiRN/NWX1Ddkf1f+HBl7ZsHq4FtUzpY6+dPFkm1g4v/CHd2M4G+F/e+vvpBrIMTz1H0AptsdiUzYKpZUhTesIDyvRGA64CkHDSf3uZuPpGKRIHpwLQ8znsBh96Ro6CYCM1KfXj2ClQ1H1Pzz8GRT4KNND0HBVOm8OtkQxaZKqxqB+P5n7UJw8qumr4ZhTdhuBtNCN86YOHavmbczIiDXtDlFJK+OuNYh1vd6XDs06xNqohfB4IlgUq0xFG369L/ra9EXOkM55rGd+cyByppT12+sPYDbfwmxORa/WEBzCOAPN+ltO6RxziER1T+QJfi2S7KZmDQAzixMhYBY8tY8VTpns5WETl5bJyFX3DFG3exm51yOFG2bqvsADggBD9xhIn8FNXau0VofLqIykezcOi7EZltFTiLuSNTLss/oZ0k4hIdqLISQzAce0Es3SBbIJt0vKccbR09yGhpfH4AYGDpDU6WZYQlXRc5csH7O5nQwBpR+TdvZaWDXfuRWUUMrTfb0eVDCMHXz2eSpT2p1b1HOQ+I4vKzHG/j1eYy+llD/zRr7nDfUcpJSSMbYKYBWUEYwB+C+Msc9IKf/xG9jZBQB3A/gqgEktgyelvMEY0yHqLICnUptdV6/d/F0fAfARAJiZtTCrbuoCi4lcS52SDVGAi9jQZVBd1EaoHhohOcAEkEqPLUjM2S1T7+8KDx3hGaqCy2EddauX0GlwH12RgraqB06jNDwWmKYt/U1ymzeG1eR4CpEZhgIAF9Q/0A9BkQUYCMdExg1FPa6JxF7257DoN1CvqlIYuvBYhBBaIY+MrI7S/+j6Hfh7ez9nmq9Tdguhyj700JrFBB4dv4TumOql8JAaulp9DizTY7isSnUn84vqGGJ4PEypuvFMmUlH9Prz1OQt4hObd6OnBunuGbuGO/NLOOsT2uTzwSHcUVzO/K7HQ0NICJBx1eWrr/X3omoNTUmIZmLcpPTBwgwkuMyHCGEp3Y+c+X4OgasjQkp9bXEBb9p3EfcUk/3WpSA695KI+pCgj9LIol7socKH5jwDFMUbGpFUYxtQcxA8xITbxXuOEMfX/sIaLKVIB2iN504mYCClNpn5DVdF4YG0MePsoG+uJfV+DFiABXB4hAUFEBgIFxtRGYM4Z8phnBHCLUusx02fQh9DWuSoZCXnKYxtLPoNA9mddnYQS2aygDODGTxx9RDumKR+weNj58CZxEipHgJU2vrs9mEcKa+afZjPb+IVJT16rT+Gk/UlsIJCaYX/jyLee+ZWfMkb6Tn8DICfALAJ4P8H4B9JKUPGGAdwAcBrOgfGWAnA7wH4WaVK9A0/+nVee9VlkFJ+FMBHAeDInTmpm6ihkjaMU19DFM8qggZHmYXGOdQtH6txEX/cPoG3lKkvMWV1wCFRVg9zwx5hyuqZG7IVE5T15nGajqoZ17iPUHLcW7hs3mvwgUl5XQisxyX8tSnie7r4g4u4I38dc/a20b4eSUtRj6sonQlqOis0kwWJEEkze8bZQYGPDLrJlzb6KURVkRMz6d1KQ8KZI9rom7HuHgsz7LOPlV4xD7cvKep7ok+9lCc39uNtE+dMv6du9TAQuSSCZpEh56PjjjNZh456tYMCgBf6u/Hck4cQlek373xkGTGY6W90lXymNqSNlBIdoHSKWYiyTcdwZ2EJ3dgzUfxzvXl8bmU/3r+b6LCP5JdhISm56DJUK0VNro3fkTxBUQ/OrKnfoii8Zg1wLWxkhrkaN2WdFpMmS6FegTBR+3JYh8siXA/qZps0LLWgBhPH7D7GSnT9NYuq3m+tgKcdEPVRyviztUO0z9V13FO+auYe9PXU517LeXos0ZTe626Y0ugALp7cOoBB5OItTeKx0tK02iE17S5imaDR0qwCQOJk9dqMKrjhV2FzNVTJQzVTRM/uuNNDfyeP1RI5fl6XGClElr4m10YNPH16L5Z21wAA3z/3AixIoz6Yr9CU+A8cp4HV7aCIX8etWTexnX/HLSnlb6T/VmV9KaXsfYNNvu56I5nDOIDvl1Jmmv1SSsEYe99rbcgYc0CO4TdTfB5rWkSbMTYNQOP6rgOYS22+C8DK6+2cdgZbooCm1Tdc8g1G09IaERFoJ2KaqKS7vMtNppE7PIcGGyafAUdXuIbCoRt72OsmMMSugt9VUjDAjbiMJ7v0YD5WJgpj/RAF4Jiyu6Z0MudsmdLXhoKRDkSOUDPKAHXjIsrcNw/rXnsbnEksqaG2GWcHC86mcVAeCwGZDDoVlZhPX7VuDnk3iD5DM4UKzxhWbTCaVhdd4SWTzIqNVq+yM8J6WMYXIjrOxytnUZF+UsITOfSR1Hi1hoE2ig6LM2SDAHCl34DTYcAechzjTg++cMz1e6R0XhnbRMxnIHPG6MSSk26EupYOiwz8FQCe2ljAzk4JW9MqqytomK4q8cQ0C7IVl1JGjsEXrum1aPI7fRyLwTiadhdFJ4n0aQCNrlVXeJlG/FpYxS53G1sKEtyweniqtw/PbBHl98l6AQ+XL5rPa5lTPWyol4M4VR5T7KNIaMF/9YWHUThD+7D9YAEze9oJ3QYfZRrUGbZc9XcrLpgSUs0a4HB5Db04Z3oA2vgnZUKGdpwISMUS2IzKJhMIpZ3RrQaAR8Yumv5AgQcI1ICg/vuHTj5j9o2kS4fopajLCzyAUx1hdYXQZkvNOg7k181QnFCMrJrFddz5puzia6/v/MwBAMAYuwOkAFenP9kGgB+XUp5+7S1pvZGew//yGu99Q8Y/RinCrwA4K6X8xdRbfwDKRP6V+v9/S73+W4yxXwQ1pA8A+Npr7Vus0EQA1EOcpLUeD1FIpdarypAX1A23ERdR4wMc9a5ntvt66748ZQKJsdSw0QBdaZkZhM/3DkNIjle6hL45VljO0HHHYFiJqqkSUQ8ei/BKMG1qp5eHTeR4aIzESjiG68EYfqD2NAASQrEgDYIqAIeb4gPSBipOaQb3ZTJVW7d6qHEfqwpWGMJChfkZPe7LwURm4O2p3j6MhI23V+meKlgjfGlrP5peT50P0k4wdW6RQysuZEpJ6XKQLxxUuJ/hSZovbOP6m9ZxpJ5E5wIcRear46ZGsUb46Oi5YeYY8tiKS6aXorOdLsjh3dVYQTPfxyFVm9dlpTTnjtat0Ps1YXXRQWycpob36t/UA2lpdFC65OZZZGg1H9AXtvbjTY2LZvJ8IHI4Vlg2GgXTStAoTPUgAMoSLyu6d4fFOJy7kQzeqelnfe1acQG5fIj+QTpPj0zcwIX+BHw1c3Bf7Srm3U1z3BYTWAoapuewGpUw5bTNee4KDwfzq+jGeeNgVsIaytw3QU9X5I1GA+0vcSHp39ANbH0HOOo4NL9XN85nelQFPso0rzX9xnhK53zc6eItey/guXWKJzmTGTht3e4BcZIttVOZ07eymLyt0EofBfD/klL+OQAwxh4H8MsAHn4jG3875xweAfBjAE4xxl5Qr/0cyCl8nDH2UwCuQU3vSSlPq0b3GVBf46dfC6kEABLMNFGLPECNB6aM1BIuQhaZLKDJB7CYxIa6Yc74u7DoN/CBsedMSScERz9Fb9DkQ4QsMrMKLw/ncHd+ERPKOKxGZRT5CCuKNvy3r9yDx2cu4v0TLwJIhNV9aH0HgabVzWgZXwqb+G8bJ/DcVYoedzV3UMsN8Q5liA/kVnHUu57Ud005QWUjyjBodFLTHqCbovgAqBFeU1HcduyhK9yEY0g6xnnonoI2jtoo3lNcJASUevAm7TYWSlt4vPKK2pfIRJwAGaiu8Mw+uIx6EJYp4YRYj0sQ0LoIZXSiPLZeauLzBUJV2Q8ILA+qKNi034/WL2InKhqCQZ0VpA1zhftm6lpnAXo9VjmHoGwletCigCm7baRRK6rXkHZi6zFdX6PvzWKl65xQTwNJsEDvu8ZQz9o71JdQ0NfvaZ5B2Roa2DEH0affXbhqznuaXoMQXjTBfHVIx7UZFNEc72YcR0vkzaBe3erhbx/5kml6OzzCTlg0jrpk+Znz0lNUFnp5PMTl0YTp1XAIcx/ocz0SDnbCIhxO220FJRwqrJp9AihyH6lnryc9hNLCqS61EP3YxonqdQM7dViEGMw4G84khOAmQGnFBRrkAzdB1KTTxt78JvbO6wZ0GZwJ40DWoipCYWeGIm/Zuk3QSgCK2jEAgJTyc4yx4hvd+NvmHKSUX8TX7yMAwNu+wTa/AOAX3vBvgBmDVeZDtIRrattd4UHwvmkSC9V/0Df4n28dRDf08HD5IooOGSCK+mIDyYwlQygtQ01xd35RzSSo0pVqDuuH4kf2PIt5d9OgU2p8gPW4bJrBAIn3ODchR05UrmPmMGUCbyqfzzgP7YhMyUahl9K9lbR29oYoZGCjRRZASI5thTBxWAyk0Ey6YboYNY1ROppbRld4RtzHRYwtUczIbh7IrxnYqMUElanU21qrWQ9ucQhYEMZA6UxLO5OPXXsAN9ZrmHhZor2PvmR5UMX5Z+YhlDbC2INDHCyumn0YKAZVPSNA9WjblACLfKRKa0kDup9CHrkpChJ9rQAygJpGRDfzdWloIy5nSnx6aE6fe70P5tyKAtXmoY0eqelNKRnar/T24+qgDlGlfbrDW1KaFrRfv7H0ED4wQ9PoD1Uok9yOCJKbwIRpJuXMcNZci13uttFz4ExixmkZMkjN56RnWEJpZZBCfZEz+6m317xUer82wxKEZMiZSWYKUHgqU0xnUJwJ1HkPz0uK8gcRRfg6Awukhc2gbFB+PaVzoR130+7CgkBH5FFS2UugJsUNYipH/9YQXAsS4JG5526lTOjtUlYCcFkhTT+m/v5RAFde4/OZxV//I99d313fXd9d31166dLS6/33HbB+EkATRNH9+6D+8Rtmar2t6TNCaeHpHomQjzkDvL102jRawQlaWuB6aIpQQLqs8NOzn0VX5DFnb6egqGq+QAXlWqFKr4bVVzXhRAbU4SFaQiOHWlhwNhPNYBZhIHL4/SukunakuYb3VV4wJZ7l2MF2VMLR/DJOFjRmPEKDD5DTVARCDdoxPeyjM4KEf0bTcAM07OXx0BDWAcDTw72YcykLqFs9U/MHKILW/9Y04NtxCYG0Us3dOFPvB6iZrj8/EDmqO6uM50BuNdM09RV6ykA+mVBYezX/EFvYN7uB7l/L4W1NQkA13B6W9tfQX1LaCdf24k3HzxkYKPVILBMBXxpNosAD7FfaCB4LDeUGAFMC8U0TdGQmogFgMRzHnLOlvjchXizzYcL5gxgNPjQZj8viTClFT3Hr43ymvxfjTtdQVX9+8yAmvS4OFmkfd7k7mHQ62KWujc40NGrn3sY11K0eGjfxRfnCMSXApbCOAg9wyCPYZ1d4WAureKY9DwC4q3IdsGEG2AYihzD1HFhMoptq9OrrnXBzSbgW9Qx0A/lE8Ro2Ug1nnRXerJmgG8ocAptRBfdUE0xLgQemvFWzBtjlbpvzWrd7Cu6caHF0hafmLWzzWppoLy3vqt+P1bNxS5f8zkcrMcY8AGUp5QaAn0m9PgngDadQt7Vz6EQezqnmb9Pr4cPVIQIjIC9QZFHyN4QZLgIAz+pjyuqhL20zcLYcVTBld+GoMsDI1JIVzbNwTENbf+dIWqZsoPHeiY4BDTn986OfBEDDXgUWmTmKIgtwMn8Fq1ENe10a81+Ni/ClbUovMRhO+XM47i2Z33ARI05Bgi3IBHUSA0tBA4UcPSiXgwn87vWTGIb0YH9o/nnkeIgXu5TiP1S9hEJuZGRWAZqSXY1qqChj7/EAU1bHPGjrcRluyoDoAbKCQu00rS5WoyoavKfOH01IazSj1mUuWPT5/2n/Z2nXJTPoJI+FmD28gwvzdH23g2KGd8iCzMxmXOo3kbdC4xxWoxpqVj+F6qF910ZQgGMrLhnDz5nAcjSmiBE9c1xTVtsAEWIwLEeVFP9WbOjI6f4gJ6l7KwVrhFBaBnt/6XN7cLYqUHwT7cPRwgoclmiAT9hdBNIy19LjIRp2T/E1US+mZvXhwzEzEae6u/BKawLvnyVtkUlVsqq5yQCZq8SWaHsqIenz4rEQZWdojkGAI5C2cWiFVDkmPfQ252wb470SjmXKnPp8p3sUDouhgcfd2INjDY2z0ZxLtdREdJrI0WMhujKPUNqm51DgI1StfgYs0I6LibNmdI9oGnFNk3JL1ndGVvBa6/8E8Kd4tajP2wE8CuB/eCNfcls7B4Dhh6YIxdOwe6YZDQA5FiOQHF1lwMqMWrl6fqDGR6Z2rzOBxZDI+RZsiuR01hGnqKhH0jKqaprGQj/Mh90byoBQg/ozO3fgg41njdFt8CFcJkxPIwCnfoG9Y2g/WnEBLosxp+mzIfGu4lls6bkFFmR6Dk1riIFIIuQYHEe96yYqe7a7gP7vT0EHdf/1++/CX59/Gu0goT7whYOVaAznhzQJfji/gim7ZYbbYnDEaXgsHxF/kpJLXAknsRmWTa1+Iy4bvh1AaUazMBn2Qmj6NQDMwFyaijwGwyzfNo1W/fv6O+tWLzMP8u7GKdMj0vuY3meHxZnttVPQmWfF9rEntw6fOSY6bVg9rMdlPDugz9yZX4KPZFgtkBZq1sg0mLfiEnqxZ6L44951tOICzlt0XkeNGNKRGFNY/DQqSH9fGlLssRBbUQmxxU1TvBUXKVI3To3g2rq5q53A6pAM7q5cIfOUa00LPdhZt3u4Opoy2Utf5HC2P4ORpqFx+9iT20DT7prBOQCmHwAklBUjJPQoaXoM7Uv1ORdgWPTHcWNE3zGda+NgfjUzuzESDuoKfqr3tRt7xkGF0oZA8hu+JCBAYgEoCx+k+iS3bH3nO4dHpZQfuflFKeVvMsZ+7o1+yW3tHAaBi0+s3w0A+Lszn8tMhQIJ7FOvGAwzBqXDEUieyQbu8RaJGE9TTwiOOWuEjVRq6jCBpoqoN+I8PBahqYz/tvBQTKFdlvo1tGpFnMypqB8cXeEYQaKRtJBjMQo8NNnLPmcLHoszrKzE5JqgjQosSmjBZREzVhdNplA4vIAGHxjjMeO18Gd3CLiT9P7fnHsRe3NrmJtOykzbcQkcwhhWV8FIF9xNtQ8hVqOqSftnnZ2M6FHT7mLO2U44iVRJST+4seS4FjWSTMQKsRUXU417Gh4MpWXU4WLpZGYjpiyCRq7Gin1UaW0YbQWrgxAJeGBdOSht6PX+amZYMDp2PYglFLjBYgKX1VBazRqgbvWMhKvHA1wYTZlGe00R2KWNWpossMyHWI/KeKxC8y7H3qZFfxTMWCSzCXqFsDICRbp0p1fNIrlM7fzfVjuDXd6OUchrx0Usj2o4u0YOaSbfwdH8MpYV+yyHoONUGVcrLmLSaaOl9ETODabwx0/fhfIlOobggS4+cOBURgNESI6RcIyATtUegjNhGvdauS5pmltoxQWsK+Gd53bmcG5xGvkrdA/XH1nF9FzbnBfOBHa5W1gLawCUshwLzSAcXS+eoeDweAjwZLo8lowoPNRzoilPbsX6DuknvNZ6LTjVG+4z39bOgQ8Zrrbppr8wPoWG1TdGVqR4/wGoSVWOsqo9DyQDh0Td8k3UvhpXEEtuKC8uBxOAu26+E9DMrFq0hkj5hJ6Y5SP0pY2DDg3K/d25z6NpdUz20uAjBOBopSIwlwkIycw+FHiEjTiPSZXOd6UNB8K837QIlaVhf75w0E6hbnbbO4QUUQbnsdIrmHhbxyBDuJqm1UbSYyEWg3EczS1jtrqjjtE2SCvaJ0XIJ13zvsMi8/rV0Tiu+2N4W410rcsW1el1WaErPDzd2WPer3AfARKKkIEyknr+Q++XxxPa7/W4bJA5gILbipxxgp4VwpIiwyy7297BNZXFuea+SDiHunEe9xeTafaiGhDTdNYAObo05caMs2P+7sZ51K2eiaJ3oiIGwjXbd0UeE3YCO3VYnDH4DsgJJ7KhRRR53ziX1ahqSk36NYsJxBBYcDbMb0y7LbwyJJqR3bktzOZa+JGDxDk27nTRib1MyWY7TmRlXUblH21kG04fdseC9leVoo/fO3M37l9YxKESlexGwkbBCgz30bSzk6EmiSX1bfS108Nr14bkdBe/uBt7Px+AR7T9yok8bgRV7M5RwBKDBlQnFTW+hixzJkwAaIYf1fXUjlZn+e24mFGf05Q2/w9Z64yx+6WUmTkxxth9ADbe6Jfc1s6hNDbAD8zTTEGZD1FgkalZh6neA6CEWsCwFqcpFwQ8CPOZptVFg49MCeeAuwaPxdjSkot8CDBgS0XQDT5A0xqaKF8vnRkccDaUQ6K/cwzYiHMGi6+J/9JEexw0XDfQ/Q7V16ga4R0FxVQPx6zVNvQc5njV9DdA2dKcs2WcQ1/k0OADM1GtWTgHMmcoLwJpZQgDByL3KirwdNmoE3kZ7W1i6IxMGalu9VC0R6aEU6gQzFTX8l0WU5koxcdE+86NIdVT2umomv5Pf+vsRzsBjwd4JZgysqHz7ibxYmnDrJqZSVO0bwyQobuweqp/QKWtGh8asSSAnGAIy/Q9BmIALQVK7/cUYCAZamuJhGtJx3cdtQ9aTEgv3YjWmRxARrBpdwynlK+EcF7ukHNwajEOeqsG3x/cdG9q4Rx9XjSbqnZQZcvHoQcXYavzPJnvYK1UAWfSCDJdGE7C4THGVQaly2AaPlvgIzTtjslGAOATqydwYZnKlOUNhqBqI3bpBIwV28jxyAQ0G1E5E1xokseBcDPZCJCUqsoW9U2S/o+LkpVom9zSxvR3fubwj0CzZL8O4Fn12r0AfhzEfP2G1m3tHIp8ZPR89zkbsJg0eP665cOCNH0Ij8WKlVNTXVsosxht4ZjegqWYyBua+Ey46ArXRCUX4hIOOBsmfd4SBcSp5r9ugutBu0lriC6YyTR8SZF/gd8w+6D5n3QUXeOBUX8DqPREYj4JpUeZhyb7KLIIMWLjgFrCxWpUxWc7xEb51+pZUtuG1YcvbXNMLotxNDWxCwDPDxbw6RuH8RPzT6lterCYMHMNHg8zRuxNFeLc0d9ZV3xUWgfbQYxIWIiUYb4aNDHnbhmDRFKsAhvCMxmNxURmkK6mkGK6PNK0s2Rvc/Y2ZX6pjJoQVwnBXIikSeoLB59Yvxu+ChbeP/kimnYXNT7IGOIiTya/t+Js9LkVlWj4UvUDCu7IkBQChOIZyJxxZC1RME16vWLJM45by3jqpbW29bkvWMQBlS5JNdDDg2MEX9/lblH2o1h6F8OmGlAsqvPAMjQWVbuP9bBiavkei/Dm8fPmvA+Ei3lvG1thMUOH3Y7yhvcKoL6AdkgCHNeDhvn7RlDF+euTmPgUXYut4xKxZ6E/T9f6XY0VM2BI501miAR94YAr+vLAOFoVTN0EHdK6FyXLV+dfNdZVWfZbXrcBWklK+TXG2P0AfhokkQAApwE8IKVc/4Yb3rRua+fg8dBQNuvafDUFZyPqajrEKkKEkmNLRasLdhuB5MYxAGSYA8kT2m8wvBJMmzITh8ClsGEe5q24hI2ogsPuqtmHMpPoqpvnQjiGKbub0bVOD6yRprFAgSeT3C2tx6v+1mp0Ojshh+cmlByMwWHCpNOuGoDbnds2v5GGZ2oUSJpcTg9epaGAG60SdmaL6jsYntw5iNl8CwBwvLCEfe56ah/UFLqTktNEMjy2GIwjx0NT3//Ejbuwt7yFe8qL9H3eEvrSIUW8FKigL3K4onQldrnbcFhkkEAV7meoJvqSOJC004olTXQfy183+6TPB0Blh+fPLsDdoO2vvHeFRGpS0FRPXSvtUJp2B0JwBCpynLLbqHAfq4omnEPAQzJpHnM/46z6Ioem0zV9khiM9CMM2o3KdTqbaVg9FFmAlsxSdACJUdTiQntT0qMWRKZh3IqLKULAUqYP96cbx2BzgfeME9pJI8vSA4/bccloLQCk7zFu94yh9liAQ94KLihq+7rVQ8nyMxxO3BYorJEDskIHwwaACv2d50EGpkoU4Inj78Z5QCZoKQCmDJa+Z7tx3jiktIIggNeuwn+z6zs/c4ByAv/itT7DGPs9KeUPfKP3b2vnwJBEELoso41oqC5gWatPgSL7owrqty0shJJndGl1SKDrmi8M57EcjBlDGkgLz/b34KESTatWuA8OgS8MSJ/hrvxVDNjI/KZe9dQ+cAB+CmmkMxttRAoswuWobgxMKC0cdlfN8XWFi67ImwfxQG4Vc3bL9DVCaWHB2TQcQ13hocEHpsnelR5qfJg0RaWDL3UP4uXODH5YIb8eKl7A9F0tgxQ6M5zFV04dgFWh4zhxzzUDFQWQmWcAYGYa9OsVywdnEvs8MmDlCR97chtme+24lsJGhhZioDQbAEJxXR42UbGTpueU3TYZlZYeNT0IHsDjock0NBpKX8uq1cfC3nWE83QedrnEbqs5lwAqnXWEZ9BJ2oin+xercTWlYxGpieO++XyD9w16zWMhlsLGTQ3nRPWPtDxChCx5LHXfR6++cOGyRENa70vamNOUtso8hYMZZ8c4nJFwULX6ZpL4lfVJCMFwrEzZbN3uI8dD0+Bei6oocx+7c1smc6hbvQyUWYBjMWia6FzPKBhFxZzE0dlVXLqfWH2rl+n45SA5zq7wUs9yaK4pAMWJRjQmGrmklw4mtGNdUU3sWzoRnVoMt0VD+o2uva/15m3tHNKrr5ALenhMR/+eHn7SVNgq4nCYUFBIB2WVPXTVzMN2TIZ5n7uGBWfDGJQ/7x3FJxePor+LorgfbXwZAEzpwgI1zLjRhg6I/TWFOEk3t3MMWJY55GSMptqHF4MGzviz+K1L9wGgAbF/ePQzOJqj0k9X5NG0upgpkpNrCVK7099LmYOd0ClbfWh5U4Ciq6bVTRq3sDDttnFwctVEYZqyQ9eA9+bW8dYTZ2DzhKrEUGaAGskDmegS1PjADLoBZLhu+FXDkPlY6RU1pJQMm/VFDh9bfhCX1wnP/32HXsKe3IbB7V8P6vj95+6BvUPf+d63PY23Vs5kxHs8HiCQOfN3LDn+y/JJAMDV81M4euwaPjT1rLr+MT686+kU1DUyTfC0DsWE1cOlkEjvvuzPYialU315NIGj3rIxYjPODlbCMcPcqxFVGuLbF7nM4Jym89AR8lZUgscDU4Yi9TpqYqeFcMadromcb3ZYBT4ig86UGBCz8PJwl5kpmbTb9Jsqq3v3njPQMq8A1e6vB3VMqCywag3NnER6yC1IEeW14gLKfIi2Kl3lOCGLXKXax5nA/WOLmPwA9SjO7EyivVHFkV3U4B5zBihz38iCLodjOFZYBk8JTgrJsBbWTPZQUedEz0g07S6JRZlhP5eck6qguamM8Ftef3Wcw2seyW3vHHR/QMNKByY1FdiIi+hLupmKLMRyVDEp/WF3FQ4T6MicuQkdCDw1nDcP2pyzhbIVGNjoEW8Z/+BI20Qrz/oLOOFdxZuLr5j9KbMI2yk0UpmHmeZ4unndFRxNPoAAw0qcCOkIydE/Q9FmbovhhfndOKHgsAY2qf4/ZfXREi48xGb7l0YJ8/mdartmijyuK7wk2lf9Dl84KCuNYD28ZwgI7Q4+0HjOnJcaH1ApStVzNb+Rhqbq+YiE3jyHk5VrmYlX0hRWKKjYoXmAU3MoLtG5eq45h11TO7gyIsNc4AHyY0MMIzIgE6o8U0+hsEjFLcHBh9LC1RvkbLwVC70DCcW3xwj6mM5Ubu5zOCzGclzFUkgom+fbu+HVIli2atY6bSwG43i5vwsAcG+Z6v7pDIq+J2uY0o3WtCzplE0Dd7o/8EJvN06UrmXw+nW7l5lB4Uzghf48FjzKFDeiCmacVqZhW7BGGcPuCwfXRnRervQb2BkVcKxGpdGS5WMnLJjImzOBCbuD9aiSmbKOkcyQCAWA0CWdWDJ4VpBkNczGLnfb8CLNeC30mjk0HLone3EOA56UzTS99kgk2fBAuBiz+xkj7wvHZCtXR+MQYAgFHXeOJwwCwC3uOfzVcQ6vuW5r5zAQLk4FVF6ZUzoHeiL6NzbfhCcWD+HkDNWc//nMJ+FLB5/auQMAEI9xHHBXE7oNAANp43rQMDDY47kVQv8YndoRatYAH9t4BABwdmcS+/avY171PUJw+IpHHgCmrAGCFPQVICNUVxF4S7waclzjA3xley+EQ3fg+Pes4GRx0fRKPDUToctIRURwIQwc1GExLvkTaIVUI34wfxm+tMz7Ne5jMUyQSBYTOJpbztRuLUhoyUv9nelyixas0UasyEkXWWcaC+5mBk5rSYE7vCWDFNLoFm2gnu7swZHiDZw8eRHrhykSfP/US5h0WiaqDqSNnz76eSNROem01SBcaL4zLXoDkGHQCmrhYY69+U2zT6tRFZthGQ8USelWz0x4LBGmGYgcytw3inV73fUMSqvIRwhlw5xrgGYjdACinYL+/FLQwJTTNvuoiRfrqUlyV8Z4cofKlE8tLqB2ZICpUsvsU9Pu4vnBAhaHdO7qtR4cHhtD2rQ7uBqMY3lUAwBE0sKu3A6E6gttg/btYp+c7sVPHMDYhQiffpjQTq03n8VsvpUasuwl9ODKQVmKSDG9fOlAj5D4kkpZOnPUlN167cltYIWN4Ws7C3Qt+mW8b9fLmVKQr8pf9H0uJh2ag9CBmdYLWQ8JtfXplcNo9/PYXadn8W0Tr0BIbjKJ9HT9t7y+wxvS38R6zU7Mbe0c2lEe53yiJlgoEUb6zIjYKf/oqyfhblrIz9GDuC08TNlt/GiTSkGav6jMBQYmRZd4tHQuFX1yFFgMLdeyYLfRlzY+2KDSxHvrNsp8iM8OSPSmzId4JL+IeSWnuBk76EsHda7lNyUGwsZanEy36t/REc5zwz0485W9GKO5Kcg7GRbcTUPJUeYBWiKHmtY+ljZcCNPnWIzG8Fj5FfMgC8lQZBG6KspvCQ+77R3TgzCDajepd6WXpQy/fl8oRE2C34/M54CE4VQbGJLzLJt90joIf7pxDADw8pf2g79N4H3NlzLNX5fFOKskOteCCh4sX8SiP67Oncgo2ul5AV2q0kN4R4pE8V3kI5S5bz5fcQnNorMXTQvNIYwT1Mep0Uc6m9KQ3yILMOds4YeaX1PX0Tbsr/q416MyPr1NAUkryOPHZ75szmvd6qErPONM6lYPndjDuxvUHJ7NtzDttuFLB/tUFqbnGlbUdLEAx6ybDMHFIIW2L90g2PAodPDY3CUzMX2ytpSJot2uRH51iJkn6RjP39nEvdXFTMmoI/IQkiW0IArBlWab/dT6HQb++ljjAjaiSuZ+aseFDJzU4RFevEgZrrvq4FK9iQcql815nHLaWFVUGXW7h42ogpo1AOe6v0X3s85GJgs9jHlDlBSFy3pQwfHC0qtgtrdi/RXKHP7Ja715WzuHMXuAPQqlsSVoMlgb9uJMF/PHdvCuMXrQmtYQsWSoKX0APVQWyuTfDhOocd/U76lPAfhSyRkyoC9JjQ2gTMGCNLxHBLXj6KeggkthA31V+pi1O3CYMGUm/TsOBEL1YF0PxlBYZsh1Ve8ktjKN2t32NoosNKUuitCTiepZq00oGIsMc19NGmsq6wVn0zgGgDKJjbiIIgtMmYgMf6oMoT/P9N+WEdMBFKUDE6a+my4f6RWmIkdd39cwUstnCISdoXH2hYOLwRQ+sXgnHadk2Bwv4pmLCwCA9x8n6KmGeAbSMtPe+veKfGQgnR4PM2Wo7biEve56op2guKXSEN0yH5q+wc3Ho899GkXUtDuK4luY71yLqqi7FAHvzm/DY6Ept2hd7mQIrqB6EvT+/cXL8HgAB7GZa+AQqFl9vKX6ivnNvhJXAsgIlrmPkxPUo8rxuq+5jgAAoiZJREFUCNcHNVzapkyj6vo4Wb6GB2tUAnv6/r2wB0X4dX1PSsMRBpDxFZKyQB39d0U+IxM6EC6ubNUxU+uYaxeDmWymZPlwWGwMeZkPcWU0gXcep6zu8sI47iovmWCpyvtYChomc1gLa+AKkaf7GrrUpL/zUGUNu9wdnBtQJWEzKGHTrZh9LFpZWdxvaX2HOwfG2Cl8/b1kILnQO0H/+PRrfc9t7Ry+u767vru+u/5Sl8Qtcw6MsV8F8D4A61LKO9RrdQC/A2ABwCKAH5JS7qj3/hmAnwIV8H5GSvmpb/DVrynf/EbXbe0cXB4ZqgqSCXSM3OG/Of67AChaByjadZBE7WUewpcWwptEczwkfQshGTZEcooGUhqEEwCcHs2gYfeMZGeOxahxgZbKprtwMhG4JvnTE9kFJrEtbDUZS1HpnYUl/JcHhmj36Xd/fOYVbEclLPoU+VlliTlny9RSHSbQEjnD6dSROZrkVqsrOSzE5ry0RB5lnkyOajW7liiYqLorPENhAFC0qllMAYoMG3bPTDifHc5iZVTFu1WWNmPvEDutOnatU62Xx0LEnONYleCT1++uYnd+mwSbVAS8FlUx4+7gB/a8AICw9V/a2Y89u2jwanduG1/p7MNUjo7rzvwSNuKyaSZrlTVz3DEdn/5+ruZBiin975YowII0mYKmIdfHWeMDbMQVNC19T5HGsyEUNJBWRdEicrjLu4Y5Z9v8RronMWPvQHCOwEyBWyjykTnPusHvSwczqq+1GlUzNCIbUUVRqtNx633XVCVXg3HM5zfxUP2y2TfOhCGo+8DJ5/HM3G7EQyq73DW+jEGcw5riQZp0OzQAqWYRABiOozSl+4f2v2CawQ6P8Mkbd5hjfs/0yyjwwGQjvnRRt/tGdvRI8YbKqFR5kiVsqno11LXbVFDWkuWjwIObJuoZ5vPUmB/E1CBPqxPeqnULy0q/DuCXAPyn1Gv/FMCfSSn/FWPsn6q//wlj7ChouvkYSEb5CcbYwa+nlimlvHrza3+R9W1zDt/AK/5LAH8bCb/Hz0kpP6nee6Ne0SxLDZCZv7lEXWkOx5JhIO1EW1d4xMVv2E0117zEpKX7Eha6aiIZIGMfIuHXL3CJQYr58w82TmAm38bfb34OANDkDL6EQUwVWYSHvRXjYCxICEiDNGoLi3iVlFSn3u+P3PVFXFXO4Ii3ghlnx3DhlPkQRRYZSo8iAkNfDZBqW1/aGcSNwwQcdQ/FjPZfU0BzRlO82qDTb/hqolwxfEY1xGD4j9feTO87I3xw8vlE7N0aYc7bMTXorvDgq6E2vdL/HogcVsIxPFK+AAA4fphqw624YKgoijyAwyLU8z319wgHJlcNMsoXDk6JWWwEVEu3CiJTorFUT0L3IIp8BAvCGPrrQQPz7ib6ypHXrIE5Xj1D0BEeanyQDNqJHApsZOrYgYKA6lKYlovVzqPMh9iKS6ap7rEQLmIDVfWlg4HImfNYZAFaomAGO/sih5o1wEZczhi3RqpJ7MNB/ybZ1/QE9C53O1P71wR66dmKvBNivUVGN2+FuO6PYWtE73dCD88uz+Humeu4V+kxTDptFPnIlNRiSapv2nlcDxo4VltFXmlj60azp45bn780BXiFD9FRrxMKaZRq7OsypY0LPUJpzRV2cCS/YhrU5ZyvmFoV5TsP0Y3zpr8ySCEIv+V1i5yDlPJJxtjCTS9/AMDj6t+/AeBzoN7ABwD8tpRyBOAKY+wigPsBfOWm7cEY66b2Uke/EklZ6Q3xl387M4dfx6u9IgD8Wynlv06/8M14xcx2SIi2NMLI0VO7YGRw1Sn6+NYDmMq18ViJarW+tA0bq0YNLUcVfK57BB+sUcO5aUX41GDB3IBvKlxEDGYGk35m9glU2MhkI6uxxCjFVsohsRY7xtnESOYwgERcKCdjXFKTwP/+4lvRG+bgb1Mkt+eRDTTtTkbHOAZDLWVsARjn4oI4g0TKORBVSILieS6Ywr+7+FY69m4e9+++hg81nzFGy0OY4fmxmMC54SxufJ4gm6sRcOpDGzheJCTYgdwaOrGXIahL9xiKfGQMLkBR3IXhpEEOnR7MYjMooRvmsNqn+/aH557FjLNjDOWWKFJUryL9sj3EyfK1FO1DCLCkCa6XEV5CiJhxs1/d2MOU3cpMjvvSMdmA3m8AGTnUMk8mfy1GE8460i/zYYaCW/dl0kiwjvAMHUeZ+wBPDXIpEjzt4LbjEroin9l+IHIAH0HREinnH5t91seQlvnsxZ6pzQvJULZ949DKhSEm3A5643S/aervJZvgu89tzyG8VkRvIumteIz0wjVVxaTTgsti09eq2z3Uy71XTXUPUhDezDUSDjaiiskWXE7ZmDbsHgvQUQyr+jkXkqEb5zNT05CvdgI6sLuV65ugzxhnjD2T+vujUsqPvs42k1LKGwAgpbzBGJtQr88CeCr1uevqtVctKWX5673+za5vp4b01/OK32i9Ya+YXjdfdp5y6V3pUDNRPdh5K8C43c2gfkLJ4XJhykQ1a4C3VU6b7/AljI4yABRYjIG0sC/1Wp3H8NXPOgxwpUBO7ZjHGLZFZPiePBbB48KQ6mmqDs4kntghLqThF8cx2hXjyDFqck/abTT4wIj/FFmkhtro0nGlD2HSawZzjEAyGbwhksizFRewdZ4yh7HTDE8dPoxH33MBM3kyxBqdow1dgY1wyLuB0oOU8G1daChtYTI4v7ryKBZ3xvD3Dj4JgCCfetpY78NA5NC0aAiqbvXwpsp5U8byWIiWV8C1UQODiB7usjVEzepjS1ADssH7r1Jp86VtYIV9kTMoI73PFe4bp+mwGEUWmKje8gSR6KmSTiw5atYAi6OmMV5Nq5OZgBaSm6xI77fFpBkorDFqaOvIuC9y8HiQQS8V+cg0l3WmkdYMT3++I/LY564hltx8J0AIpRhJwCEkzzDakn43Hefl0SRuBFXM5rJiP2afWICqNcSMYkANpZW5dqWJEa4/soWaM0hpJzgIUlm5LxwIJGzGFqOSXjKgRwy+erpZZwbaoTlWjFiyhNNK6W57KZi5kAxVa2DU5Jp2FxtR2cCAN6IymnYXNwJCOFXtIQkp6QDnloX7+GYyh00p5b235oe/Luz0dfeEMfYogANSyl9jjI2DFOLekI70f4+ew99njP04gGcA/APVbHnDXjG9fGkjVDdUnUcYSGYMb5FFaFod8xCcas3gNJvGzC5dntkycxGatI6D+JV0JjCQFqaUqEx6aSdkMYmBTCg7LCmVA1FU1DJhvdSrLRyDFirzwCA0PtB4HgBgf58AZyJTv+dMQqjspq8umTYGRT7CmWAWKwEZmhc6u3BnZdlkSB6juYhV5aDO+LNYHVVh+bSPPALiksgQxpEhDWFxlQExgRAWfmyBIJt/UjiGUFpYUdQUl7caKHkjI0VqsSwOvivyql5PAU0Mhhl7x/xe3eqhbvUw4+zgnuKiurY0A6D1GYCsA6hbPex1k8lvTSuhsxFfOigiEfcBAB+22T4Ng6V94hnqC710lAyQ0+sKL3F6sFDjAwPd7Us3ww815xAJnt6nUFpwWWxKQttxCVdGTRxU5JENqwcLEmdGBM9+vr0bqJNx1fdQX5Wh0uWyMEWkCAAbcckENVWrjxPFnoFybkRl5Ty65lq4MjlvgdpH/feE0wGHxHxu0+y3PhbtDGJw+MI208oaFq0dOU0uJxF+zRpkJ6yjAjiTpuegz7nuSWxHJUMRr68nTWX75jctSFwP6ph2aZ8GwlXXSrEf3CIoK8OtpWn6OmuNMTatsoZpAHqS9DqAudTndgFYea0vYoz9CxAb6yEAvwbABfB/A3jkjezIX7Zz+L8A/DzI4/08gH8DEsF+w16RMfYRAB8BgImZROyDegHcRDMOBIosRFH1E945cRaXh00TrfSljbKK/NKjaA4kNpRDmbcHcBlDSyme5ZhElcXwlESnL6WKOxVNAIAQzJS2SHkuKSutRmW87M+ZVHjB3VCylHlTSvip5pMIYJno34XASlQ1UXdfunhxOG9u9qo9wO8s3YulRcL/HzqwAg5pDK9nhVhVBIEA8PtLJ/DwxBV4R1oAgPZeBz9++FnUrCQyrLBRBu4KSXQL2vifqF3HscKyyVb+1zv+UE1ZU5TedLqZBzOQFs0lKCPaER424nIivAOKhjMwz8gDhzCkdh4LUeMD07ylKd0ESnpuMIWhcLFLibrMuDuZoTiti6zLSrohrVcobXBQ/yBtyGLwV0FZdX2/FRcy2QdA1A+6b4IYN7G0SgQZCgobp9oz+PNVGnqbKnbwvvEXTUb22Nh5VPgQz/YXcKlH1/evT301o2hnZivUUNh2VMoYQgsCZcs3/YD2qGCGFAEy3FtxCbM80fLwhWNgq3roUEf7gHLSquEPkKKdNuAADaaVLB+DmPZpZVTFY9WEWK8j8qjwoVGW01mE7jk4LEaBj8xxzCmmWZHSqRaS00AoEppvGpyja5PjBKXV10Y7mluyvr1Q1j8A8BMA/pX6/39Lvf5bjLFfBJXeDwD42tf9hmR9H4C7ATwHAFLKFcbYGy45/aU6Bynlmv43Y+yXAfyR+vMNe0VVs/soABy905WGbhsSMSQ+2z8MADiUW0FD0TwDwAOFi7grf9XcXE0+gseobpz2TRzAFOgGW4tdFFiEGtdKXwxdkRD1DSRDIeVcipxhK2amIU1iI4mk5/PDBXx+8wAqLt2ov9u/B3fWl3GosIpZ1XCuWz5iybCtdYylgzIfGg0IADg7mEZZEdDV7R6C2EJlkh7+d06cxV35q2byuys8NK2+iTR/eDfV8g8cpEuhDf6U1cGqKnd4Fs05aM0IziQcGcNXJbpjhexEddPqYCsumddWo6oyYHpClig70tPomq5CL5GS9ASADie+Jr3ffUnOQGcSnkKv6AnZPzx/HOHAwY/fS5VIaqon08y+dOCkmsEtQUNZWo7VgsRSVMs4hr7IEbkiSxrtmjFUf6cARyfWWVxgSiMAZRahSDikytYAA5Ez9f6z/ixeeGkv8itkwJbmx3HPw9cMn9SMvYOWKOBAfs0omRHFe96Ux7bikul5ADRDkuZeaqsIXDvdaWcH61HZOLgYHHPOlmn+1qwBfOGYUukud9toeyfZYIC1uGpKUa24gLrdM85hIHKkpaCAGHPeDvopeg3tWNIN7LrdM/scSguBtM0+LodjKf2ObFNbr6o1VCi89DxNMltxK8V+bhVaiTH2n0HN53HG2HUQi+q/Amkx/BSAawB+EACklKcZYx8HcAYUjf706/VkAQRSSskY7TFj7Js6CX+pzkGnS+rP7wPwsvr3X8QrZiJ+DQXdqwTmiX5ZYM6i8/fCqIaaNUgNuHFFdS0NgysA1Dg3ZaMCi3AhHDc9hiqP4TDAY7rsJDCSMD2LtiBDqh2WY5wI7du9hcs4smvZ/NZZnypnC+6GGazzJbHFajRVXzpYDJtmmEtIjnfVXsowh/69vZ9DUTXvinyEGh+aUlkQWwqyS/twILeKGh9gt/q9IBX1pmkdKiwx7jrCTzSkN0wZBiBD+/xgAXXVzDzqXTeROpBQU2i2UXKaYSb65RDoirwpl21HJbzUnzNO8KHSRRWxJheLM2Gu1YcOP49WVDCEcVN2iwIBZc+0IU/zHg1ELpO96InldCOepEkr5jwUWWCcvcWIotuxdekiT6gvaC4tohi5OJoEQIJDaYbUXe42fuDhr2EzoL8ncl1MOm1TEmrFRbgsxqyznSkjteKiyZh09K6nsMdzPRzO3zBGMqf6HOsqc6zwITwempLglNM2tCH6vBCzL/WXLgcT8HgIobEuIChq0+4m1z8uoGl3TcO5ZPlwWYQZJa+qacD1eV2LqiiochhA6Kd+CrXl8RB+5JhMwoJAOy6ibA3NZ9qpcwBQGWnGaeGqmqifcXfgC8dkPt+JYj9Syg9/g7fe9g0+/wsAfuGb+ImPM8b+I4AaY+xvg6o0v/xGN/52Qlm/nld8nDF2AnR6FwH8HeAv7BXBIDPymrFkpvziQiitXbqjt+MSnhnsxQ9XCYkUSG5KUbrsU+NAXwo4pqEscMDZxJS6r6hkxBCqu6MlXPSli4qe0gVHjQWmAU37lehD1/gQM1Y3YYzNh5iyu3AgMpTbde6bXoqHCFN2y0Tx12LSctaZhsNiHM7dML8Xag0LZRR1lKZLOgQxDRKNCcmUIbcNvHU7KuHeQiKfCYlMM7jJBwjBDV9TX+RwoT+BfcVEupJD4KKiFd8MSxh3ejjkUTLY4NRofnEwDwC4MhzHsdIy9rrrxsD84ktvg/d0Cd076NwOjzsYCRvvHSPlP12G0upkd+SXFJU1XbwYHN04nzgo1aDWSLPz/jRe7s7gRyYoBtGReJEF6EjPnKsYvrmn0lkI3R8koqNZV7WBrSg4daD0oPUU/wv9eWy4FSMjWuZDPFi6lDgbyOz3fx2yuK24pDD/mtcqwFZcQi+k87Y2LONw/gbmXboWrbiA5XAsA3X1EGaYY/Xsg77WREBIhrnAR7CYpHtIfYfmSroR1ACQYaY5Bma2AZBSZaTzwDN9KC8VPARwWWR+UzvXUaqPokuIidhPhLLlm9KTw2JsRGVcH5HTa8d5TDodg14axLcIynobiP0wxvaDUE//mjH2DpCU4SEAfwLgk2/0e76daKWv5xV/5TU+/816RQiwjARnVzID2aQ0WBrk0NHcDRx2V03zuMwiulVT4jsAQ43bWIuVQhkD5myOlVipk4HouHVPwoXAUtjAcUWn7UqBpaiCX16leYC5/A7++thT8G8SidcRuR7QE2DG+Helh6Uoh0aqMVrmvukBfHzjfjy3sgv/w5Ev0HF51+EiNrX5ptWhko2B9BLtdFpKNJQcTT3opV4XkuOs0iFeHtbwcOFC0gSVbgY6K8DQFW4GvVJxfORUWeHj6/fh3upV/PEqRbNXzkzjPQ+9YGY1PBZmykpCMsw4OxiIHE4phtPS54tonBmiP0fnOscjRNLChDLUpLOQQGYFOAp8YHor6UYyQBFyX7rG8OzPreGIt5LpSWzEZTw/WMCKIq17pHLBfJderiIh1Mtiwug1aDpunRnM2juIJamiAcQ2uje3liI0jOCxoTkPmjFXO/KWKMBBnKEq0UNyurRF9Bku3jb+ivlOGghVPYi4hFPdXThYXDPH7QsHAUtoyQkOrmdxBDaiipnNKPARCe+kEVVKkU1f/6o1NHMkdG3y8FhgmsVCcmJ7VaUdh8W4Ohw3FPBHCyvoxnnzmxwC7biAJ9ZVibiyjvn8JoTkCNV+636GuQ6Q8KWNvHKo404XOR6a/t4t1Xf4DqfPAPB/APg5AJBSfgbAZwCAMXaveu9738iX3NYT0oG0TATMEcNjIqmKmuZ0QnEtGENBw+cY4DLda0h6Dl0RmXKVxRhaIjLvt1ICPADwnL+AJ7aOoDilsPd8CIfF+NtTnwdARnNLFDCjDFqZE513PdUci020pTj+JeH1dbahG73aAD11ZQ/ApLnpp6weVuMSjrr08C+GtUyDGwBeDOYNhnzB3YQFaWjFYxAxX4GH+D6dVVUtFHiIDRWddkUeFTYyyCpfWiiy0MBrQ2njKysLaG2qqdiI4dCDa3igsQgAmLyni4bbM86hyGiy9ZBHGc8h7wZiyTHl7CDGPjrXRwW6Cx7uOknCSveVLiOUtik7+dKBEEmfgkPAF05mHiSNeInBjDYCAJzzp1G1BnCchNeoG+fx5a29OH+DoOX5QwHeXHnFlOwMLbiyDn1Jk8IaKdS0d+BLB02VzaxEY7CYwC7V1yEDKqFdiwWZ0Y/Q/9cRdCw5ypaP1aBq0ENCQW614/MVvbqO0qkBPTTggLrVw8Himplf8NU+a6dqQcBiSbYSg2XKNzS4iUzD2GMBzg2m8KU10oq5t7mEqp2gv3qxh5eGc2Ym4UjhBnaiYqJexwTuLV9JDU3m1T6n9d1j7C3TtPN8fhPPtuexMSzhLRMkSVu1hqhZA6N4p2c5FrytzHfozCE9GPitrtuAeG9BSvnSzS9KKZ/5JsYLbm/nQDVhzdLI4bFkxsC/afjFZQJlzsxErMeYUcvSPQcBoM4TDHkgaSJa9w7KPMRTw3l8fPU+871nn59H9SEyQH9n8s8JC6/KErNWG2Uemn26HJWoJGMkQXMo8wBlFsFTn1kFR4MPjdOj+nxkmpg/efzLqNs97FPOgAx1YHSrG1YfHg/x4pBKNn++dRDPn13A7Dw9NB/e/TTmnC0DQwQImsshzVAghBqW4poozUeBR6a30peuif4Bgmz+tX1P4/wUlZEiyTHttgxO/WB+FXWrZyLL06MZgreqMoXDIhT5CCvhGO4rEQR791u2keOhweuT9kFoKCVqjAxkuveSnhRfjsYw4+yYTEPvs56w3pNbN1KjQIJA+uDUC/gETgAAJtwuQU9TdYRQWnA0XFZQRO/ZobpWdF01ZFdPSOt95hB0HAr9Rn0WzwyTkdpZkv3UrD42ogoqlm8oOv6sdRTHSsuGkqMvcvBYmInsQ5lAdj0e4pB3wzTN9fvaudAUOTO6Gb5wcCx/PSWvGalJcGkM7WIwjku9JlpPkxP95EIFcycTihAAeHZzF4JIwcpnR3h6cx7jatr9vtpVwILJqJ5rz2Em38ZsrgWAmuYxOI4UKXgQkmNvYRN+lOg3xGAZtNmEKiFxk41qIkEFU+e30KJ/5zuH18Lt5l/jvcy6vZ1DipMIAEbCQjU9MQkYw9wVHBtxkjkUmIMCA7ZFkCGq7svkLwvUVNZR9lJUx7986gOY+z36zd6MhRqAL0xRtPuBxnP4fOcwxhwyNLXSGcSCpcTac9hOKWotR2OYtXfgWTGEclRa/EdvM2kFCGUSVb69/DKETCB9AA3XaSfZV9BG/ZC88Pw+zH1WYFinpugvvvXt+NmTnzUPzazdMRFemIqu0rrUWrBI70OREWWHkR4VHnqxZ9hHHymdR80aGDhugScssgA1E1/uz+Du0jUAZFRrLjkQ3ThvWh1sxJVMiWXKbpsGuh97mQypbPuZyWBA6UykRI3IyVF0O2V10FfTxEBiTIp8hPdOKiZfuwOHReY97ah1RhUrOGWaYwj///b+PEqS7DrvBH/vmZm7+RbhsWZkRu5r7ZW1o1AFAgViIQiugkiCokixRZE93VSPttMtco561OrTmuGckTTqPi3NaY6GQ1JqNkWKFAkCBIl9B2ploQq1ZGXlnhEZe3iEh3u4u5m9N3+8xcyzAC6oBFCJ8ntOnUr38MXsudm97y7f95E38FtZjYPhhqfsCIRiKW0WKD70EBI90plXVQNDWxKLxI6WmvO+tXbN6Fg4jRFVItHhkO50W8V+V94MuigkU3YyqJXVaGfx0PTOTLjt1+1CZ4p7qpeG1s1lDa65e3l3kucuzjNmN+nJMRM43JRVogPumFzynzFb2uZUc5mKHSufCDt0VJlLPYPCfuETJ3l6LuWvP2RkastymBX4UGkNKRQHZ9b9WjWDrg+MYPogOzoG+75DpVXfQwPYSt9UlN1PCiF+Xms91Hy2E1BP/2U/5KYODkChCZYSCe0ngySahlS0LXisrSOmZN9rDl/LTFGkIQV965jXVZkZ2achcxxDr+AUv7xznOZXStTOm12STMZYfiBiZsLsTptBl7c2XvWv/8jWaaajHe6wlN7bKmYpHfdTFivJGFeDKR6tnfE9h+kgYUOFnmajrSQlofyuPkATSeVLXA6rUQySrazqM4N4fofOXINS25yjVoJ2ljcDewUuKde/uZJWkFr5HTAYqvGiXrcsBIeZoM14sMtOmk/QNIMul1Nz83ctR5C7ke+tXOBUedHX/wc68GUT30i3nEWuVDEXtrmSNv0oa0lmbGR1r9Lm1t995ny46UWLwDhypaUfHnA9GDdeG4uUjlDMBNv+O5/YOcojjVf85yc6pIPymcBCZid+bDO7Y6k3VpRZt/WszmIywanyoj+GIsgus/Ktz+yYLO9AvMG9lYte99pN6BR7HLfFCwyskh6YrGspbfrM0k1YFUc+a7LvsxNDeijYX8o/s5XVuKdqkMd7S62hTAnMaPKBaMNngrKuiU5lfEYZfMbRuXXGg92hhvPZrRmOjDkg3i731C8PTRqVZUJqifr6k4pwO+BCxzjzE5VlO300jNgv8kYtJ+NMhB3/Wy0n40NBZSlt2k2UI6j8C+db/nKmuRnEfv4+8J+FED9FHgzux4DgfvQv+yE3dXAY6MCXBb6ye4jby4vewZkdfw6Se7E/zwvded7WMCo6x6J1xmXGaib8btVA/jUJbqQzJEIVUlVBMiZYu984pLV39vnp01/yN1aA4nC0RsvWZp/cOEQlTJi0GIRm0GUs3PIX7J3xFaM2JhKPjdhSto9S0E4IClq6PQQlragVdp+ZFj44OHCQc/7/3R0f4/+Wfh/lp+ws/E7ERxZvZ/qQCWiHow1WsxoHwm1fNkp0yIv9eZat2EpUuTikpJVoycBqWYApo9wRX+Fy36zLxzbu4MdnnuBDa/eYderV+JG5Z/2ETFtV2BdusWQbljWZI2NdwzHR4RDora1KfsrJ/L4ZV5JJXumYUlZzvEsz6HrcwkI6lgcca65pDzBnmXQdvUZHmx24Qe5a7YzyOokOh0gDi++J5cBkA3bU1Tlkl0n86xfeiRCanz1lwP8nystEpL5stJo2OBBtcG/dXD9zoRH2qRWmlKbCHdbTun+ulVXp6RyQ1pR9Zgs7fzfVU2xgAz7zyJCWSRZ/rI1C2co55OLIsCl1NTwuYTzscnfjCrc9YIKeQ1s7rYWdLKZZ3uVgxWyiYjFACen/PhNus5SOc6xqJqqeO7bB1k7Mvor5TS72pumr0NOrtLIqsUi8yBDgg52bVnIMrEWgYp88i7w+4H2zJnjjZw4WT/ZWIcRjgKPH/YjW+lN/lc+5qYPDyEY2spF92+0NHhycaa0/DXz6m33/TR0cdnWJc4lppJn6s6Iq8iZzQ6T8P1ffBcAnXj3F0T1rPFA38/stVeaLu/s515vl1orZAa2mDTaTGh+cMLPvkzKlr/E797c1zrDww03//X9n8gx3la/4lNVoAaR+Z/k/HPlDzg7mfFP1cLhJVugnREKRyF2URVKD6RnUROozgZpIbRnH2IYqkSFyTV5tyjxuhLeL2f26nX4gFD966jm+OmsAd0cb61TkgFl7TE4F7mLS5KJdyy9vHePeRo7Urck+NZEOzeO/3J/zO7u5YJuWqvCDTcMPtZBM8LHWnXzli7cCUN4Q/NqjVf7h8U8ApoGttPC7WldmGytoKzhQlNuFN2XXTws5e2v1rK+DX+jPGGlRW+9vBt3XkOS1VcVTNjSkKdcUUdvbWlKTOVnb0dKK4WBySm2qbMZIC+WwoNDozJC0VOxHMt956CxXu02PJJYo1tM6//MZw4i73a7wT+//oyHwoUT5zGUqHLCQTNIsIP0dJsGVtgzSO/T9oTGZEItBXpuXHdpZJaf0ADvVZa4PQ5/e9Gjm8bA7BFhzYMW5cOu6CaecmsTpfeyx59kIdilPJZ4+pavKyIJGg7T6EO79P3n4KdPcdxxnQnmyRncM7g5wpat9keXmchm2MsfohwLSBpHI/DHfSBCc0DdJdHiddlMHhzG5y1tjgzHYUktEQrGlXFnCjLI6ecDHjr3CByafYs6mwC0V8y+++i6i5+q89F4TMP7G3OPcHV/2egtgyjpNRx0crfNzc5/zZYYSytbilf/O88kkh0I3z6+ola+wrfOZ7AjlG8BgeiMJsiD7aZg/HSJ2Ptwe6gv4Grr9jI4qczhqeTCgOa7Ma0p3VZlH6q/wSN3UzmvS6BE4ttpYJLw82EssEu9oSzLlUGnVT/rEIuVsMlPABKSc6e31ALSx+CL7gjZb9ma+q7xAT5d49k4TkBYuTjMR5IJDkcgYIH1QcEHicjrBZ7fNbPvnrh3n5499gdvLV/15tbLqEM9RsQF9qTvJPdVLQ+ykY7Ln17GtKsyE29QKzeOi5oSjuu5mZe+kPIeSfc96Vh8aIx2TRke7KIuaaeknhR4dewXGhuvdgdBeB7laM8FvzpbbWqpqgpMfmcbX+XM8h7LIcCtFiqalyv5121nMfLTJUtocel9xrasy16S40J8hlomfAopExk4W89Flo+8dyYy3T58dWqs4NHxRboNSEhk9LVlOzHdKoV6DK1BaUJK5LgPkfEeGVaCfkyZaR+/KbxmCyWBnSLfaMcu6CTgpNKvpmB/xznE+5j6JC6Pdr8v+aqysN7Xd1MFBAn3t/q1pq4h1W9c0tds+H2gaOvUBgQH42L93VJnHjp7lY+07uLhpGoCDPQFTQcejlS8N6swF20Oa0pmW/Pra2wC4q3aFd9Ze8bs2MM3ZUqG+KYX25GA9HTApBx54Ni40ayqkKlM+0T0OwP7SOgfDjQJKN6AhEz+qup7VWUqbnsGyGXS5ko4xZ3fxAx3SkDnFw0zQ9rTd4JhDd/2NHqAt6V7K/oLuBOADTIagKvq+NzMpe9xdvezr9q6eO2MdwlJWZS5s8Q+Omkzh/P4ZU28vZFiQK505jYpAKOphUbugNLSDnQ+3fRCtyQEtVfFB766qYf78s93DACz0m3x/Mx/1NrP9eY+qq8pDTLE9VWI1bfjmJ4AsK5s1mXWYDdrIwo45lskQ+6gbIXVr65TjDnhqlBCF5KePPuHPqdgfKomM9bTuJ4vAZH4dVfb9DPfYix7piDGZ4xIcGaDLPjItLcrZTrOpMr2CpsT+0qbPdNxv8amNW1j4lKE6Sxqa+ce22N/cKNCdmOvJrUNmnbZb2z3hNhtpvUCP0TKEfvb9jo570QYTo9rW8ffJlmWydY7ebARK9FXkj3UjrXJL+RqX7UTSVkHYB/Jr8oZRdRfsjd5zuFF2UwcHUZhr7+qQ9azGhzbvBaCTldjsV/mHB4ygXCwSvtA5xUsdQ4f8i7Of4gOTT3HooQ2+sH7Mf2ZVpFyygLMDYQtZkA2NhGI1G+OpFXPjhHsy7oyv+F1JUw6GSkAKyw4rc8R1Ufynq4WXK31X/UV/DDMypa2NgzEjpDnX0od2TvJ7n3wLLku+5/5X+eX9f1xQghtuvEVC0dElnt09CMDvLt7HozPnPKV3TQyYC7aIRcrLmWnuLvQnuC1e8LxFV9Iml5Mpnm6bqZrvGX+FY9GKDx6JlpZOI7+cpoIdXugbtPOBaIOOKnt+n8PRKnNhe6iUluiAKdnxx3XyxBINuZurjQmzBp4ewzaKD9uprNWsQktVuaNidTCirSG67FgkQ0I8jvHVZQEz4Ta3xQu0siqf2jbaGrfFC0NcSqZMETBrA/G6qnoQGkCXsg/GYByxRPFC3yDPY5kwFex4jILTYnC7+I20zmS443fMbsS0ncV+A1Kk03YWy2SI8K9XEJwyFCDCy6H2VDSEm3A7crcOiQ6oBAlpw063RZrVXp3VtOEn4Dq6PDQuPVCBJ/YDQxPSVSWOxabh3FXloRHjWJrx3Au7pox5uTPBO6fP+AC3N9okKOiFuGDUk7kORYDm3GDWbziqcsBWmpP5gRnOyIPEjRsxeqPTZ9wou6mDQ4ag4XoMIuNYtMmDjXOAIfeKG6nXU5Zo2llMx4rJLGTjHA03mGo8z/c3zA5TCk1bR55LJxK5EJB73Aw6vnY+E24zKXtDLKwAg0ImUSp8xjrS168BujZrAPzzEiNXOmlT8C4uFTc3/8HyOllNEW2Zm3t/tWVQrIWR3pYq+c8zUz67rNnJoO1ezJ+1Dngn7Gb3pdCcsMC6yfEdmkHXn9dXdw+ykdY4avV5A1vacH2RphyYAGpPO9GadVXj/3fxYbNO1Q5/Y+7xHK2KZClteCdrkMIDuipiynFABdGQ1rXhPCoP8VglOmCpSJERbLNi5/1vKV1jQOAdrRSmLu4CRCD0UO0905KldJy5cIu3WvlSh8h2u/S5YIuaSAp6HOb4XPaR6BCl83KZQrKR1T0tye2Vq/Rk5K+TRIdspLmM6KfXT3KsvsbtVVMqXU/rjAU9DgTrnkvJaCdE3ul1VJl2Fnv0esminx1XQE326ak8WJRENoSbmIqGFdsGOuT+sYuMv9scUyctsy9uUZUDnyGNyV0yJAOV1/F7OmLB8hr93vP3gICfvvtxs06Bef1akrNFxzLheMWU00oyZS2p+wCy31J0F2Vb3e/krodGYPTGz3TNhubDL95JY2yX/+KEYeW9Hgskb+R2f5Q5vPEt1YGX+GyrEsgBh0vGgc2FW8wGO0P9gJ9sPsn5mhm3PBGte6Ef57wjlMcNAJxNplhNx7g3NmCtpbTB2f6c/46m3OVPO7d5npd31l9kT7BL1TYpt1TguZwApmTfcECpHFTV0wFLacPvBuetuJDTnY5QBEJ73MN98UV++R0f9qRn91QvUpXpUI21mD0MMKOxD9eMwzt4fI3DpbV81FGkVEXGloqoulJE0B3CCBwpr1CVTW6L8/p/QyS+d5IhmAo0S4VR8obs8T1zJlAfLK9zIMoBTI93jhEIxXHLoHtLaYm2KhmsgX2Nxw5Q8ueR6IDLFlswG7RNUCkE2yJ/1LYaBsm5ZrSjpv6DhdN8YP7P/E5zJtimlVV5ub/PN+sPhBusZzXfeB8QGGK6wgjvQjLpX1/UhgbjmCeDHW6vmHWbjzaHdvUKxWSYO+c7xxcpi9SPac6E22Rasl1ogkcioxHsFjikBq9RQ2kGHd+3kBghJweSM+p1iiomyJ7tzzETtv05Oh4nxwzbVhU20jp9Ffne0HpWZybcpuXYakVGLAZeaGe82WW80vMMuR1VZieL+fSywUUsbzX4qVNPejrt+fImj28e8T2J6cm2/0xzTCWfVTkyPofrcE5fCE0j7rOVms3CeGgGGBwuQt2ozEGPyko3hWly5seGHBAJxS2RmYjoKMMJ48BiAZo9gaLrAUuh311P2vLIqsUcOLqMw+Emc8F2zjNPwEeW7uSuptnZ3V27zEudvRyKLShOKAOas+9fSMdYTHNGzFPRCi0VeufQUhWe7x3g3spFv0vqaIPNcI6uIQfEKE/eNy77vKN6lo1y7B9TOE+A5/v7PUbh0doZMoQvv8zZgOkykby/kJdsahjEdc+ixQ+GG9xSWva4BNcrmAnM3y+mJdpK+8Z9JBWX0gnP1WSOr+p3ci/tzHFXY8E7JMd7VHTuYJX+fHayS4cSt5RcqSJkW5d9uSUSGR1d8g7M0HN0vBP9raWHePnaLPcfMGWnS+dm+WT5Fv5P858BDA/S/3bhbXT6JX76uJ1Ws8fnpmaqss+2in39fjUd42JvmvmG+f0THbJeEBRKdEYglMcoLKVNq6edH3NPRTy3Y8qUHz1zG0Jq3nPCZHWyppgJt62wkfm9HL1G3pgPbe/CfMfFwQxjuucD1HpWZzbMgX2ZzWzc40bQ87KeZs1LjMndoXKMo8F3QStADelvOAlQF2g/ePRpoyZY6INMhB3et9dI8L46PktVDvw1383KTJU7zJUtEaUWFo9hzrkkUo9/cccVW8DbwbJZ+7951xOURUpUxMzob5F7GwWHN76FQnlHXpUZAXjupLZ1/ocs782LSY3zqfQ7x4bcJbZaD662XkJRsg7ePR+g/bRRK6tx7sosy23zGT9x9+PcMnOtMDboJoTMsn5o814+du4U/+S0YcmNS6YRd96Shf1x627O7cxweN8a+8IcfBQVipqJlrSv2xq2VTTUa4nIRzwvplO8sjvH+a7htd8bbXI6vjpEGhgXxlIbMiESsJiV/ThsJJQt11nVLSFQWvgykClFKa7YEp3LPlyjPUBzKNz0gXspq9GUXe9s//ae7aGszlB+ZHbyJlcDa8gBWSHLSgpEi9va6DG43XoJ0yh2AciMqqb+Ct9fbbHUaPBw00ym7X1wiwPxht+1d1QZrQUP7b3sG5tdVfZEdWDq9a4hDMYBfU/jjJ+gSTADC+7161mdRAdDILpIpPnrdchT7SN87BOmT3bgCymDRsBnf8z0wB683RzrnNU7AFhMDPLX9VYCesax29/3RGmJ1WysAAYzQk/usdFRyMtBkUjZzmIfwAI9LGubIH1Jy5mT63RloJ6KhpTWDpXWWM/qfpqpGXSRKKrSIupLpmzrmv97S0Z7Yzw0mygpNJLMvz8WJpBkll4eYCUdo6tKfgQ3UQHTpR3fxO6r6MZqOFi7GUBwN8pu6uAQkNNlZFoQobxqm8Kwq65aPYcvd06wv7QxxNrZVSGRUHSdUpfdPTu9hYY0pZMZYdHBEfyDBz7hdy8bWZ3JYIcD1uk5l+5Q2o+OvUL5ROIbeT0taUjlSfH+8FMPUVkWfOInWvyd6c8BJiBdSid8GeBAtM6c7AzRYxg8h23WIVFa+PR6Ltgi0QGpyhuUZieW71YHSPbZEd++Nv8FdqTWrOsw1UBZZPSdTgQmW9lQJV+G6uoQWeh7KATbOkfpJjoYyqCassu6qhamega0VURPh34yqKcjXuzPe/GWPdEWB0rrflopKSCZwTSHizTdhtq65iesfmTiaR4ZO+vLESfKS2yrmHkXlIXiZw9/mX3R5hDu4CMbd/PENdPM/4mjz3A8XvKZU2KZX71IjZ0+cg7s/GDWYl9y1l4jpmPW8ZXeHJ+5chwVmd+uPR8yGBc0KsNMs4HU/pj2hFv0dIn11HIphTu+wQsmAxoUdszL/XH2lzbyXboqGxU2sePXKdFhQTY0piPK3rHOhNu+2Tzw12BIT4X+vBz3kvv9TUDN/GOE6b84x317dYHlZHyo4VwN+p7vqR70DN1+ofEuhUYhfVlpJRtjIuygRH6dt7PYYy02tJEtzQrluBtlQr05osNNHRwUeVkkByo5NkZFgvAO7131F8gQfKJt0OSn4mvcUlpmUmasKreLFixlOXmfwqi/uXHZ+WCHuPqqr2NWZeIFb8DQhMdCeb2Hno74axNPMeeFVgK2VMC0rVHrSJM0BMery56CoSr7PN/bzyctl/0/PPgxlqh5cJcDCOVAuoxYZCzZYFITA36w+We0GjnrphTaA/kSHTAZ9NgoTBaZ2n3mM6i2iugWuJNikfpAUDS3tlWRohC+ud5VITMyp5EGiKOcxTW22AAXbFqq5PmY3NqWyHhpdx+/+/mHAJg6usk/OvHxoWPeVrF39mYcNscYmN9PDuk1zInWECdRTfa9+M+BcMNM4FhAl7OLO5PsvtQE4CsTRzi+d8ljKYyYVC7RWQoyxkQuKHQg2hjqMYDFmWTm84+UV4mCjMP3G/qM8AFz7I9MGZryni7RDDp2BDdvpDdlx3+mo/xwGxYjhdrjpZ5pgn929QSPzbzC8XjJH4OjuwAzwlvkbnJa4u6+UlrSsSA793uatcvxKdtZTCwGeePegtFcoG5lVUMWKHIKkAzhy1BKS1bTPNsxzLf5WGrXAiI3sroPSO58HRW5U5PzwDlpNCd6Kv/MG2IjnMPNYy4o9GzJwTmczFJfN+zfN3SJWGRDCmfrqgLsMmmd2moW+NeDYXRdzMpMFer6S+k4f9K6C4CfmvoSJ6JdX8rq6pBVlSvDnSgtURNJgUbc/N81tH/msc/RVyFHSyu83DcjtisDEyTev8coqDZtc/iKJbH7YvsEh+M1jlnglGMtdVM4S2qcfeEmJyLzHW0dURMpLYvadlgEN0bqwIKJlv45gK/sHuXlXXNM7xx7kcPRhs9O+hav0SuMhk7KzJ8fYCmeQ3veEVNyd4iZtZj9bHjhnhyP0VYxt1eucuZuwya73K2zmo753WtbVbjcn+Kxxkv28zJKZN5BxSLxsp/mPF02aM4/s4HDy22qChkCSQ4Ya8hd3j5zlt8+ZSee0Gykda+7bdDLXQ7btW6pKpfTyRzVHXRpiGEq7baK/C5+NW3wwaNP+zJWogP2RFts2KygJMygQS3Y9b9v12YeQcGhJzoc4hjqqJJv9j428wrTUS7h6UpAxYBQLJ1VZZ+SzYjcOpm/ha9puGe+2Wsmg4pjpNtZxf+Wh0urvNib98MDZZkwHuz6jYADrzlH7/oV7hgikfmAXVS0M8HAKr1RGgoAgaVDd9nJVmGq7fXaaJT1JjCJYVIFMzmymo7xB8uW7G23xk8efNI70RN2+sKpr/2b1cc4357ivz30J2RY0XqR+TIVQBWzK3fOPUDzan+Oz142NeG7aldoyld9czcSikQFRLa0tU926Vk5UsDX5Z3Det/YV1Fa8qXuCf7XT70bgMb5AP2OTf6n2//QfyfAFct9/5+evY9Th6/x9w+acVrH1uqU46boWDEf8x0Zkp7OewwuEERf5woft9Mi5/pT/KvnvpcsMWtx7wMXScKWDx6B0CRFgSQdUdL9gt5DxDiF3ajVTXAkejNyl6Ws6p1FR5VRSFbShq999yzD6QfnnrBrmxHLAV/bNc3briqRKunPy5WU8hJPSktVaFqH1lIVM/Zp6eyrok+tQOSW6ICm7A5pBLRVhYOlNf72STMeWQ96HIzWfbZQEkaa9pWBCWBT4Y4pLQV5WQpyDIDTnHbvf3zzCEoL3jNtMC7jQcdMCtngs53FtFU85PRaWZV90abPgHo22DjHbMR5pN+A9FREVsiEkPnEkrOYZOi8IS8hxTKhJDI20vrQaKnJXnNabykVbXtehhhw4I97Pa0zE7Z9Q1tpQSPo+eDhSPNckOwr4/h9IFAR7azCZLDj164hjfpcEfldbLSDCQguKJavw4a8LhtlDq/PhBC/BvwAsKK1vsM+Nwn8R+AwRkP6x7XWm/Zvvwz8HKYL+n/WWv/pX/QdmnxH2FMlPrx6F2c+ZRx3ZVnzL299Pw/ebxC0v7Tvo0MO8bOXj7HbjmntN4ykMKxnAIbHqCkHnpKjIRPuiK/w399h6tTNoOv5dsBcoA6pDEZtrqfxTXP37Y45dFKm/rNLm+b/lTUFpRzUVBUpGyr2usN//fTTTEeF77B0HEEBUDYpB7zSn/WvGYv6QxnW9ToYRrIzYy2z2gZIfvTUcyzsNgGYDdt2eilP0Rty4INJN9NDFB/u5vF4AFtOmPI7z2AI0OboP4qynlPBDgMdFNbB0CvsL234tS4K3DhEvNNO6Bk+Xc9z1VYVBjp31D0dkajAj3zGckBLVempkteEbqkqsRx4xLKT7HS77GbQ8VgEZ4kOc+3nwtirswzBlnWSL63s4cT0Wq5Wp3NKFHCAN0MB4tZqMtyhq8resV5JJvnq9gHeM2kyzbGgR0P2/FpWZX+oSe7Q0w54B8bRumDhgoIL0mb4wDCiOjxGokN6KmeGdSUk58yl0sRiwFRQEOZRkedWaqsK7SymbTVp3OeM2d9zXQdDeJGZcJvVdIzldNyft7suXOYQiWyoCd1XEZnO+xxu9PtG2Kgh/frt14H/FfjNwnO/BHxSa/0rQohfso//sRDiNuCDwO3APuATQoiTWus/t4u0qyN+f/N+829V4rGpM5w5bZxi6/IY8fwOR6tmBzVAMi4SP1HTqPQJA2VpFdzuUdIrNOfODgzA5nT5iv/74ajld+kZgmd7h/iNS28B4L7pK9xfv8BJCyZLtLkhHZ2Gk+R0IaitDPr50doZXv1+c9xntmb5+QOf99QUYEpBLgD1Vcivv/wWfui4ad59oGkEUpzzb9pyjyt1BOghLEdDJkNjrwCJfZ9bhxPRKnPjW5AzXA+VnFzpzgUTtzYuOLjS1SE7feJwHUVRISm057DayGIvT+mcaUPu8kLfECMC3Fe7QKzz+Xt/LP68DCDNCe0kmEzABYvrEdL52uzaYzMUEEGBd8hohqv8sewzG7R9z2EpHedCf9bLnWZCDo2q+u+333slmbSO1jjNv378WY6UV/2QhCHQy0dEF5IJukmJhux5HIwRRMpv27WkwUJnnGfKhwF4oH6BVlb167SR1f3ILJhde5F+RaL87hpysKA7hqV0nNV0zIwK29clOqRWIEWMROrpxgH/2ZcGZphg0gsN5X2wWCR+zLitJF1Voq8m7DnVmS9v+kCwmEyYjMxSoDhrZVXP4RSLATvEfm2dprTjC7thGtIaeJMQ7904YdXrTGv9OWDjuqd/GPgN++/fAH6k8Pxva637WusLwKvAg9+qYxvZyEY2sm/WhPrL/Xez27e757BHa30NQGt9TQjhah/zwFcKr7tqn3uNCSF+AfgFgMl9ZRZ6TQCmSx3eUjnH4TsNSGr11jFmwm3fkPJISZu6/8tbfoe2snVMuzP8ws4pYplw3nK+fOzj95LMJvzyIwancFf5CpFWfhedIThWWub9+wy45989+wiLR8b5J/s/4o/3id4RDtpd3KFwkx5BYZdv0M8dpfmZqS8CIKeVZ3sFk3VkCBatOtiHv3gfY+ckTzTNOOwHmk/Syqos2V3bwXATKXSBjkPTUiU/Xusow11zua1KRCJjXZWHmtQNOfDo7oZI6KrQZwyTsodC+GOUGBxEcdopK9CQu88slvWKZa0BAa2syku9eVYGZtLnocY5PrxyFy8+cQSAtbfVeffEC74sZJhFYxasEtyUMtKZLjswFNOBp0Jx+BaPBFam7JQr4kWMyd7QeKyr67seUSwHrGQN//xUuEMgclyAK8/07PXU0yWUlpTs2h8urQ31RWqyTywSP5Y6ZgFpbpe/ljS42pvgZG3J/15uFNUddyPocXtziZWeWbfVuEEskiGuI3PsOVlg13I+gcmYtlXJ3xcNO0bqMq5IZJzfnWEqyhXsHCVHrro2zrHSCj2bSQ50SCwGfirv6mCK9aTG4Xjdf+a2HQAAUxpNVMjTbXPLL+6Mc2x8jRNV0y8MhBoaWYW89OYyg74wJaWFgblPFntNbq8vEAU5Y+6NsBHO4dtv4us893V/Aq31rwK/CnD7XSX9D/c5Yr2MXsEZuLp+sY+QILyTREEcGK0Ed/N/fPkW9lTzMb/GRdiWUYEewaCwc1Su4nC4xVLZlHCmJnd4dPJVT3WRIA2a2V7ADalItBqSId3IJHsCRSzcFI3Rrg6Eec1iam64O63U6KHbrrF2sMZ/ccAEE1eGebprnGhQU8wF254UbzmrmON2o48IO5VjKUIGc/RUxAOVC/lcuj23uIB3qMoU6cZhka+lHhd66LEBpRXYbBFMOlwEAQ2R+GGCnop4tT/Hr734MMmycayHv3edo/U1zhzMeyfNoOvLQB1VZj2t85u2pPfw7AXuq130zdfuIG9ogqGJaGcxQcWOfNpJIFdrD7TRcl7P6kMkd5cG0/zZtmmC3zd+iaOl1RxtjBjqfbSyGjXZ9wEmFmbcNmcvHb7MHRtuz9fNzb+dI98TbTEZmlFWV4+PREZV9lmzQXSx3+SjT99FZcHcylcfbfJj+5/xzlNa8Fhg1yWWCcriMcD2GBQ+GFR1H0Q+Kpppyd21y3Sva/ZmSF/Ci0TGelYf4mgKhPZTV59bO87ZxVn++u1G7yPRAfWg50dqV9MGS4Mxnvn8KQCmvqr5yqm99N9tJtFua1yzbLjFwB2w0J/IJ6LiNRIdsJVa9uJ+lX418lNbfTXccP+mTes3TVnp2x0cloUQe23WsBdYsc9fBQ4UXrcfWPyLPiwUOSo5QtMtEJI1REpXB/QKN2RxVntcJpbqQrLPBpSf3P8kNdnnlZ7pNZx5/yzv3HvJo5cTLRmXGW0t/Od1C0Irv3j8M7YmXADmqMhTXGwp07TdsBvoCDMhdDWNCrtwTUkoBion0mtKuJKax//i+O+yntW844uE4nDUIqkZHqPD4ebQrrxhmWId9qKEYj2r+ZHPhuzRUeUhx9WQCZkWQySBxb/HIqMqtO85ZAiacuB7GYYzKmTd8tw0ZI+2iv1IMORTZgD/y9V3sdKpc9/+K1ybNHXo8aDD948vcvpuw2u1L9xkTPa8g2hRZSurcaq5Ytch41+efTdbOyYQ/9d3fm6ohzEZ7gxlBa2sNsTUmSG50JvhYGnNN5g7qszz7Xmetk5r8NaAo3OrQ6OcGcJrJwSWtjrHoKSURJYjpu3rnEmUp/kG06O4mNUILG3JZLjDC7v7+dLaUR6bMYMVh8prlETmeYv+8PJdTD8RoO11vdm18pl2w+OYZP3YsbKjq3qYPt1NNw2sToa7pt39ss/yQkGehTvhpPlog1ZWG+qdtG0fCeDuiQWm4w6TdlTV8Um58dtuVubptQPs/YLNCi9uEyTjvHDa3IfzlRbTUUZC4LOqpcEYX7x2hEbZNv9nYLa07Zlgb6lco63i1xD23QgbZQ7fGvsQ8LeAX7H//8PC878lhPhXmIb0CeCJv+jDUo1XfgtwAi7mlM4kU1a3IAfTBGJ4SmdPoEh06oFzj1TOkWjJiZKZDPrRu56hoyNPKxELxXJW8jfUujJEbV9umQmpi9uTnJ5a4IcmngFgNtjxvE3OYkvbDcbxJ9o4eMdT1FI5PQWYCafVLAe9lUVG0+r8gnntRhZz2AYweR39Rseil4vqc8BQw7sZmPFXB3QL0PQIiL2wivSocTCZw9Ws5INeIEzpyn1HR5eG1LtKKA6E2z4gzMj+ECHhD8w+x3OdA7xj/CWP2xiz46/ut2ipKh1dGmr2HiitMzOxbddB8rnwOHh22gEzQds7tFZW5c74Clcs///j7aPMl1t++ukja3fx5edO8DNv/SInLWCsJvscrGxw7X7DpfXo5Dk6quQdTiwTPt2+lS+vmKzt/fu+xvHy8hBVRVXkDW5D75EOIbAdQtmdowG95WszHuzy2Mwr7Cu5CbkOrazms7xAKtp7BLunzG/xowdfZibc9lNHLjC5/ztN7OJ0UrUwEhpg6EHGCpNgzXCXnir543KbLBdEW1mNTAs6Vt+7Zuk13IRQLBNuq18bwjFAjj349OpJri1NUL7P0mUcmqQzr2nYktBL2yZI3DeRU5ukOmBjoembms3yLkkjoGonpKpyQFUOWE0dY+4NpNIYBYfXZ0KI/wN4BzAthLgK/FNMUPgdIcTPAZeBHwPQWr8ghPgd4EUgBX7xL5pUAuPESsLVLU255CNbpwH4vVdO89ZDF/gvZz8DGMqHCE1mf9lAaBazwH8OGMdaJKCrCs10YV4/AA6ECecTs+P5o9Y9fPSjDzBmNu1UNjL+5G2zPPyDBuE6F7aHuCDLAiIhmLZz8A6lPClTD6SrCigJ4ctJZYtcXsjM6NCJaH0owF1Jm2yrmNutE00wYDaHQ2iIhJJQHjS1ZLOOIsp7nD5X0nEIHN5jQITymA+JYYX1CFk0mcxZWZUWHiUNeNEWh+ru6ZAGic/ylD0ul2HdFi+wL9rkYJgHPSm0Bf81/W9UpPB2o6nO+c+E2/zEgafpzpvd7E4Ws5SO+1KIFIp1S3cCcG/doJLdbnd5t4FQgqocDHEpfU/jjKfQDlBsqwpf3DE6FY/UX2E82KVeMt/hxiZdT2E2aLOQTuQTUUIOjeeO2azNjb46HECR6mE63LZ9jVy8J7BMqwDvm3+RxR9d8OSP1aA/pDHRUWU6qsyUveZWs6rtjZjfciowGIPiOTeDTuH66NNTJdqF8lhCRE30hspICumnlDqqzEJ/go9dNij/B/de5tbatVzFUAu6qsTzrsfwiQNMbGhaj5p1OvbYEqFQPHfR/H3japNTpxaIRObLREcqqxw9vsTChrkv9lS2SXTAXkefkebI9Rtto8zhdZrW+ie/wZ++9xu8/p8D//yv+j0t61QbQrGaNfjtLxgNgX2fgc/+4El+ctr0uasyoVSokyttGqZP9g5yrx1VDYRmUko21PCoQWIvhj5QxWgVAPzp+VvZ+8WUqG2d/W0VsvG04MBKRFJ5J5iR0deaagFUZ0Bp+LS/rSVHQ3wA6WtTgjnfN0Crpux6Og6AlbTBWjrGyciUV1xwy+vmytKEO5qRgSH3s6jwDMGVdJwvdk5ylyNzi1aHzt9Rgl8vYuTW0pXCXDZQQtHRecOyZMstbpx2NWtwIGx56pEpucuMNPoRnrbBZnPF3lFZZHRddoLi6c4RjsWuMmkCxL8+Zy6vQCr+22Mf8w7sQn+WK71JI92JKVOZMoUJJj9/4POs76sb5bcCg2kR1+AEbvaWWvb3rXC0vMK+vZv+73EhU1zKxunpiBlpshvP7uokWmUuuwrQxgS8Yj9gzTKwuvq80Zio+J393lKL4/Gy/85MiyHxnqrso7QJlABbaZVmueuvUfd9xZJbLBLfAF5MJpi04D5XspXaBFqHMZgJ20Nqdc2gw97SFm/ZdxGAo5W1IRnQjaxueNHsBqg/pdi9ZcCxfaa0daqxzFjY40zV9puqCc3yru+TmTXLeHTmHE8GZjDj0s4kD01d9H8vEgHeUNNA9uaIDm+UhvQ3ZYK84ZzZOWwdW8cuJMi84RhhnGRW2MtHaE6Xr3ocggSWMkHb1uNrIh1CSCc6524CyFLJ5i0RWdlOCr33In97z/N+xrwp+yjy2n1ZGPW3wH5eLDIGWnqqcDAB43wqCCyaOBYZNZHyUPVV/xjw6nT3xVdItGR/6EpCkiuZvI5WJH/fM/29ZFowG+aN+2bQ5XvqL3uhHdePceYCg8tGuiqkbDmd3LqZbCD1P4zU2v99NauQqXx6aV+4RVVkdAr4j5YFdvkJJ5HRVZGn3Gipas60iild3FW94rmVHKndwTHjqMcjBx4z53FtMM6r7WneN/FVwOzaB5ZFFQzB4WS2Q1eX/XOJDjnT2+uD4IXuNPeOXfKljdW0wYnyEoPU6XqbJm2R0ruIMTA79Pzv3axMVeQlnarsk6lKgbXV9IKuJU0fHExZq+PLbwNLQOi+oyYHXrTIvT7RIb+3YJgDLi1M8cN3fZV7axfNbyvMpFCvwIbbyqoeBFe1eIaeinIUttCMiV0/qLGSjhEU8BKxTKgHPe6pm36RFEYbpMjS2s4q3D1uMrLB/SFSaG4dM9nvkbLp6/zsLWZjl2lJJFNiy4cFJjOYjbZ5YNJkgOuDOhI9RJNRva6ke6NslDncBOYmb8A43flwk//64U8B8G+z7+Vn7/6KRyw3pCIWgvOW+XFK7lKVGVLnO+JIwKqK+Fj7TgBujRc5Xc774i6suNHDdD2mfTzjg2819AqPNF7hfH8Pv3Lx+wH4uf1f4KH4in/fYlY29fZCYtKUikAPhhTn9gQDT7kBecMXzM6wo0PviLtWY3oxswL0WlC2k1vuvUWUbiwSAqn8jjwWGeuqQkP28vFWHRrpT1dWEoop2ffZiBSarg5Rtmw0LjPaSg5NKxlAodNi6Ju+h/38TAdsqJIvXUQioSEHKC18MJiUvSGxlsiS9RXtRGmpQJfepyO7/I09j/vzlCjvTN4x9jKna5f9e910jnPUbaurPBnkMp2v9vfwhfVjHKiZgHNxZ5K3NV8pAMrkkLaCo+NwTnIy2GEjq/vm/3pW904bTEO6par+ORNM8h18gOJQaY2i/vJUuEM7q/jR3JocDGUrkUiZjzZzWnGZEIgdNmyjWmxHrPXrbMTm/QppmWJdn2TAmNz1jx3pnXHwOWnhRlonswSCm2mNSGTsicx5uJ6IK20NdEAs8ua2I95bT8y9eKXV5JH5C0xHbX/MMQlxmGdQbVVhK636nmJVDlBaDvUxFvtNry7n6TK88t9riSO/aRtNK73xbUfFtOxUxnyww6TscVtsdiO//PYPczq+RNU6lL42pRU3xVETA2KdURKKyPq0LRVQQvGexvP2NQbN7BC+rp5/S9kgYj/w1ifoq5DvGzcyo2OiTzusUA5cEzAbYo6dkn2SgrPu6JCySGkITVagv/5Sb97vDOfC9hApXl8H1vnnmhPFslFU2I0DHoXsHt9SWh7CHEi7FpEo4De0QCH8pFdW0FEAk0lMBjmtSFHZzpnTxnbHWBLKZzvuM1w3p2+pNxKkX5u+DoYoGVwfw9FhxCKxjKfmPBbSMWaDHdaVG1XNLPlaxR7PLlXR9042tk1YhwdIdGgQ0ihfHjlSXiGZCljqm5LMe/a8RFX2/Q74UGmNQKgh5HWG8FrZs+E2klz/wfD/lPwxRFbS0wWbWA6G6vgu6DRll1XL2mswKteXPUMfRF0gcubO72ePm6B5cf8UUmj+6Johj0wytwEw6/5j+59mW1U8g2rVBjylxTCXktBU7fh1zfZcPFdSYCg+vDCPDfIui3Pr+9TgsPlNOznLrft8c1DufzbIh/l7ryUTvNyZY9dRvmjBgcrmkJ5DPeixZifmXBn1Rtgoc7gJbH1Q8xdSW5hxULfrm482mCmMTjakoKNUzmKKoGybv3XhKBgylM5IcGItYohgbi7IiBBEVmLxgxOP09MhkxZoVxKKW0pL/LNDZggr0Wa6vOMYQUUKaJ8lZAjP+ur6Ek/uHuFyf4rTNZMuz2F2U87RGieeCxIp27Nw2IqmVJxN68wXOJ46OvR9ExcAqoUr3GUlzsUFwuzyHa6hrUrXjWgqujaDcZ8ZiwxlX9/TAS0Vey6lrg4piUFBL0LT1fnYsaEsySnJwdCdxDLJAWjCUH4HvuQSMCb6PNs3E9CtrEqzetYHg9tKy6xmFf97g5EcPdMzTLOvdmf5ock/K6xB10uLehp42Wd/aYNLu2bCaU+0RYD2paykkJ2ZxyEr6RjzUU4MEAjt6//nd2d4oH7BO/1WVmUs6HnHb6RKa76xW5V9A0jLqt7Jr6QNxoKeD0imv5RTdueBJt91B2gO2VHVi70pPvyZ+6ksmffvzimCXUFWMb/d2p4Gh8prfpcf2O1NkUshlgmB1kNBr1jackA9V/cPUPR05BvuUih2spjIcnPplTJX9zc5ZEFyL+/u5WB5YyhTccFrywoPSaHYW97it5839DnRlTKlx15itpTjlJQWPijcMD2HEWX3zWH1MG8eVmVqBGNcsMgqLMucNrinU5pSs8/uRBWmh9BWgo7dJUWuJ+B1BzRtHTIj3RQG9LSgZOPFvmBAV+fz/Q05QBbq9V3/PbbZjCkHrTtyOB0Zla3Sku85HC6tcaC0zpR0M+OG72nJOpjD4aZXuQPTrHYBA8yY7C1Rh5bKsRimZ+AQtqbpK5UjAzSAOGXZWs06WGCYfU9T9ilKiwJcTJr+33O+WWr+/vnuSf5g4TRzNVOT/tk9XyQSW4Uy08CXqiCXRpVCkxXI/abkLi0/YqltU7tiP6NrgHVBztuzlI57TMpqVmE9q3tH3lJVMi1Z6BsE7eagymo65ks6AwLGZI+Wqg45pX3hJu+f/Kp/3M4q/OaiGXrYU2nzvsnn/OtjkTAXtvy6OZCcm+d3KGN3DrNhm5W04Yn9ltJxrg2a3qk2Smacd6qgM92UfZutmGvOZQwuGPTI9asBO4Ia+AC11q+jQuhP2t8/BGLtqi9splUmwwr77Lj0atqgGXQZ6NA791yHwWWrKavpWK7voEoWaZ1ncUVm2EhkhrY7MpuH8oEdDlZzLqXZqE1XlTyWwwXLRAee/I+swkTUYXy8a39/QTPa9dNMXVViLW0wba/NG9WgFoAYNaTf+FYNBv5Gmwu6TMoBb6kYvYZXklm2VcxhO9rWlNBWsDcwN9WGGrChjLOuSedINTNS0LE74JIQbKXC6xTEInec5jOCoZLPWhaxL0y9mIshwQvYY2ev+3YqyYHuujrXk3a76gNhi44OfdazpSJmgl2ahSwI8t2qA5+V/I2oaCmszCdsaDkk4SmF9qJE5vWmnFYVGRt+1ND0MZr2fl7KAtpZ7JvBPR0wG+z4+q8rXbnHH1m6k40/2cfCrNmlH3rvBj86/rR/f6JN+Wi1sJPs6Yim6BXWw2Qs+e+7zUI27nslLRWDzoXmg7KRCS2Cv4pkcBEZjaDHO8aMPnOvHjEZ7PieQ2LHYgc6eA1GwI1wuuf72de/bQKhfLkL7PhtsJNTekRbLCQTzFvHu57VeaZzmNkod2AvtPfmSPUJfM+hKO7TK2xgpFBD1NUuq3CO3OlWOOf4YPMCtz12jc2k6q8HpYWnoZmN2kQi9QA3KYygUTPoeicNpiHsVNd6KmKqQKc9FexYor6c4LGjyt6xt7MKVTngtqrp502fNPKeLqMqy8QHPbPuTpM7KJD/BSQq5ANHngVgZb7BfLnlkdAN2bO04aE/3htlYtRzeOPbcm+MFQtyORGt++YsmAt2VY95/YZMm8mgDeVoJUosZWMcDjeJLaSiqx3+wVyAp6KUcZn4hnKGcfDOMbudsLtgT0W7rGbCO8uBDRyuJl8SiqlA+/HbKin7wi1ikXlnvqqGf5KeDkGZMguYsdCyyHy2UhMpv772NpqWAfWDE09QRbOh8h5BLKBrL+iqyOwYqrG+xmYOecmppwOjBqecAzL8Qa6Esy/cZC5sU7VO06HEHVvpo9Pn+O2Hm0xUjUP66KVbmT7e5u7YNIQPRy2TZfjvM/Kg3YI2tlN6c2WhbV2mKbu+YV0iM6UU7QKxqctLH6gMwMxlYIFUZJZ5Fcx0kpvMAbPTXlVjnOnt9cC4htwa0qnuqDIbus7fttQlrkFfRAYXLRIpG1k919KwYkYuu+2oMltJhfHQfP7+oMOh6oYH1bXHYv857lbtKRPAxjzNdzDUpxjowAMIwThi08y35ZUoJQlDZiMnimTuhxMVMw7bVWU20jpdaf7+pc2jnB6/itKSl7om2B+vrHBtMO43A2DGWd3O362p9KVLl5nn+g0dVfa8SFU5YF+0ybZyWhu7LKfjvh/isoFIZP49ZZl4zWn3t3ohW+kVRqnhtdQl37SNyko3h02WOn4kc12VuSPS7FjqgXdWL7KlAl9OycDvlsHoJBwNN5gJNJGwkxlZRltpX+LpKsOD5HSowTRVVcGB7QkSzqdmGS+lER1d8hrRM+E2t5SWCoI0A7ML9zQTkrmgQ4QuyJtmXEwmUUFeO+3oiMe7xwE4Xl7icLThNaDbSvL+iWcLpY2cFNAdYyTykpESGVuq7EWCXHP6eiU410Q2/4YtHXm0stMHzidHEmI0L9tZ+s+snODv3v4Z1hITuD+9fJKZsO21l9sqolXQE4hERkeXhgjhYpkMcfnUxIDf2ngL9dA8d1/1gs8awJSNBjrgP1x7FICXF/fwk7c9xcO1V+0x9oeoqV2ZydXyl9ImNdnnSHnFf27bBieXvQx0YOhRHFJYCA6GGwWSuj4JubPOhNm1e33nZIK1pO5Bdc2gw3snvuadaUlknK5d5vbDC/m62H6Py14awa53+GDGPJNCtuNU3NwufKADZEGq1J1vM8izIiesZD7foZ7NMc3FbWajbds/y7OV8XDX02D3VcRT7SNc7pqS3TumXqEe9LxuxVi0Cwz8Z85HmySWbwtMYLmSTHqSzKvJFIFQXqPEXGsG2FdEOvcLm4lMSy73p/zEk1u/nCPqRiGkR9xKN4WNB7vcWza7vJaCa4VaoGSYCXRDhcQi8wR0TekGMQWJDShlYVDQA/sxVRmwmOYjmB0dspiO+4t8X7RJVaeeoiNA8/nuYf6XJw0Q69iBFf750d/3JZ8t6yT+5dX3mmPq1fjg/id5a/WcH02NhGPrNI8HSFpZnc+tnzB/n86YDdpD46nzwZY/z0kJWyrHHPS0pKe1d+TTIhnCEyjLoZQh/NpgyQXdjTfQhrAws32MlqpwbrDH0yM8VDtHQ+565zsVd5gKdjhcMmC6Ow5fHXL0schYTcd8HfpYtMK5ZJb/94W3M7C7xX984k+ZCbfzKSkNX1k97H+L6f07XBFTvmdwIFrn4mCGM0sGOBU9V+PykUnuqdoyA7tEIh3KAhJCvtwxu/S7KleMA5Jd7/wTHdIpBKySYEhjuiYSWqqALtbR0ORQSWYMdJCL4Ajlxz3N52VkaF/fdwFgMTVONkAxE+7QUtUhCg4jrmMaswaT0OelXaMZ3UoqPDb+8lDAud5c/8adY5GOI0MyE277APlg45wPOHfVr9jPzClAAM7uzrKbRZSumwg6UGjMGz1s1x+o0s4qXhIXTPbgynGXepN8efEwd8yYzcg7Js+YIG3V4ADW0jGjAWIDytd293OxM8nxhvntDsdrQ8dSLFO9XruR00pCiItAG7N/TbXW9/95omjfTvuW6TmMbGQjG9l3pTlm1r/ov7+8Paa1Pq21vt8+dqJoJ4BP2sffdrupM4cAzaIt6bhew6Q08a6nFYllNAVoK9OIdYyqsVDUpKCt8h+xJgWZ1r78tJhKO3tva6kq5r9/+YdZWzI7np9/8PM8VHvV6xQHIjPNv6bZIR1trHlFKjDll+f78zx3xXDzyCsx/149xAOnLtAl3yEfDrc8JmBgJR4Htofwv196gJlj29xdNqWHBKOq5jKB5SwY4lbq6hBU6tXZ+hYtnSuuGZU4T2WObWaLvNTlNCXcdzTlLnNhy9MndFSZno740PLdALxr5mWaQZe5wPR7OjKiJhLfN2mrEpPBjs8mirtvZ7EcDPH5RCLjgwee9lKTlwfT/O75e/gHt3wSMJQMXVVisGnr2NvQTvIykiGTy2vxG1mdT2/dwsdfuhWAH7sr4pH6K/a7bNbmJTPz41zPxnyvoUWVgQ59z6Epu2acxV5zBvEc+15Mya67L6cE26xmY74p7konrlZetbKnpcLv5UpM7phikbCUjvOJqyfN2nZi7rhz0TeLPXbA4TssXsTvpIXi6fYhUnt9vXPiJf/dAL2sTisrMxnm4EAwpaDnrJ73blaiEfUIZU7hXWxeZ5Z3yU1tObqOO6smE3FAuwtW2vbzl48x9gd1vvIeO5bcuMbJ+BoDHfpR1nrQYzOteaXAj716C/pKlc495prcO7cFMj//6nUDHd+06W/LtNIPY3jpwIiifQb4x9/qL73eburgsKtDr1O8RyRkwJLNohUGuJVpJ6xjJB+d01SYKZyio1zPBFMB1GyLoWaIVFjPXAoe0O1HyB2zbJ9ePcliv8lPThmEdEMmnCgv8QsnvwAY8rfVrMFlywR6e/kqp8tX+ak7DOHsk/sO8fbpswRor8e8pYIhtHRNpARyl/fNGkGhz26c4GhphS3lKLcNgM2VX2YCRVvlzXLH8Jpc10QvUoJUZeqpPQC2MkNnUERhF9leqyIjCDe94x6TPTq6xPv3GPDgsdIKTdn1DckaieWQclrcA08lbR7vUpV9fuHw53wPqSr7jIn+UNPzgcp5D4IDePv+V31ZYSkd58+2DjL7JevQF/tc3p6gN2vFfIishKdxijPhNgfiTU4eMI3Y6ajty0LOOqpETQ58Gakhe7SzCokdF/2D5Xt4eXmWv3bCjLreVb2Sj1piEM8NuetLQDXZH5rqcaWi4ne2VezXRSGNJnVhAsrRbwwKNfSa7PMDB1/wjx2CGYwjvt4xBoXeW4bg4bFznr0U8McLZiS0GXRZTCY4WjLoY3csjuTuSHmVgQ6HAkKxGZzowFwrBVCbQW5rf4w9netY3LV3kSfedYRj86Ys6dDQXbupMMdgRKocCytCk1UURxu5oFDVou5vuP3lY8O0EOKpwuNftXo013/ax4QQGvjf7N+/kSjat9Vu6uCwmdb40Na9APzC5BeMA/L14JSnewc8R8ydFtXsrKdNYFgq8PrvC7q0VE5a52b/x+1F25S7/I93/hFLt5rG65SlWnD9gQDNqWiLmsiF1Rty4Mcve9qMvn5P3YxTfmD8aSIUfR14bQQptCfdAxMs9gQD3lo9CxgHWUJ5cE/VZgmeAjtLX6O90Nahn6AK0JYaw62D9I1n17SeDhIC8FmWCz59ldNnSKE9viFCUSWhYceI3fe4G7MsMhRF/Eg2NJlUEwnbuswt5WtDDcdBoeo5LvssZo18Fj5s897m835M9NnOQZ78/C0cfdk4Dx1KVhebLB4y9ftT8SINOfCI+raqcGu8yP59pi7eUWX+08r9vKV5wfcFnmgfI5SZ1wjYF23SDLq58H28w3KjzkSUUzg4XAGY5nFXl5mzv7+j5/ZMsaghsZ9EB0ipckpvFfnegTMj3hMAeQN6MthBlpV/3Ay6PltxPQV3TDPhNj1VHqLwjkTm17Wjyn6CCWAs3LXXeOKDGZgNg3PmVdkn0hmLFvsyE7bNPWTJ+5aTcV7tzvKOprnuN9I640HHH8Nq2mAy2GFPZB6/pZlw6z1LfhrJZUczYdtnHxmS6XDbI6J/8MTXyE5I32tIdECiA58hXY8qfz32VxhlXSuUir6RPaK1XrQB4ONCiJdf39HdOLupg8N01OYnm4/7xxGaSS8LCG+rXPS0024ax++YMU61pyK/k4oFtFWunSDRVGXqP6MhE06UVpi3QKuqTAjKi0xKN5JpyjYNjzg2zezEj1va54WjxrYTIiLxZaSSUPR1TqyXIdhQYa61IJOhZjTYeXrrULZUmbiAKHVO2KFwY5FwNNoojLIG/jtz8JvpjrksY1KmJFp7vb4I5UtN4Mj9An9+bhCga8dy2zryTW8w00pSKF7uG0rmmXCbmaBNogPODubs2vY5GG54p7WYNaiJwZCeQ0eX+GrPTIZ9fvEozVdAB65cIigvRn5iBmApbfiJqYZXVstppi+0pjizNstjB0wg/uPHT1NaD5h9i9lYfN/eF7mjcsUfw/HqCl9eOMyfbR00xzwxYMaOTgNeAKe4E28GXU/SlRCQ6NBnEl/rzHNbddE3qBMd8tT2YRphj4ca5/1vXcQ1FOU6wTjBi4Np77g7qsxMuO2HBRaTCfZFm76Ek+iAqhzkXESYnbzPPMIdxoOOQc0XQG3FMqD77K4dAX++P86dtavEln22q0rsZpHPTpyTdxmZo9twGU4kMo7Hy0PB5lqvOdQEj0TGWNDzHFMH4g1UgQ+sIXtspHV/b99QEr4bOK2ktV60/18RQvxn4EG+sSjat9Vu6uBQFtrXyqtWK6FosTCEewBbyhDsOf2HRGsyLfzuFwzGoKViLg6mAcN4arQKnPN35YWB/XzzfBFTMC4zOnbH3LE6Bu5141KwWBDuAQPOyzRUPSeSGU914jqvJLMcjnI6g5K9pZxzd4HLjcfOBLusqzJT9sZ8MdnLv3r1XaxvmpvoR279Kj828aTPdhyOoyxgy/YYNrQ5j5rfXZpzKTr/4v8DNDOy748lFpnljbI16IJkKBgepPODWX776gMAPDB9ie8bf85QYJfy+yC+rkwRiYzYrt1KZm585wwe2XuBD7+9ztr9FlHdCTh5/0Uv3AOmnJJnKybQZHZ3Oxdu8e75l7nYnaKTWlqIiwH7PtfmYmAC1nOPbTEdtT0baVUOODq1zmTJ7HC7qsTHN++gGZnHx+IVGnKXmSAPGF1V9iWhRIfElugO4FR1iWpB/Gc9q/P25hlW00bBMadDyn3OUT/TMT2HT105wQePPuPFgSKR8bmtW1gbmAB1qr5MJDIvffrVxXn2jLf5wLyhEmmG2ygt/UirY5Ztyo4PGFXZ99cjmGzGUK6YY3Ra0S5ozEbbjI/t+smyno48dgYcQK7nsySnMbHHM8uWmQ53hnQqJIorgymfGeyJtuioMpuWWPNPVu9gX3XLU3J0C4C812Wa/OZ7nSaEqAFSa922/34P8D/yjUXRvq12UweHpLDDlig2lPSz2LHQxMLoNJu/W0eqXNMMEjRK5w3C63lsvh5wJijU3p2zdyWbvg7o68wL1CwkkxwrLTNjG5ZVnRKhfMACo/IWF0BtTjTHfbcbI8TfFMPZSEuVqYlcoMgpsjnVtee6B9j58gwTS2YdzuzfAxN5lhAJwxbblAMfBLdURFsVR3gDr9ENOSK6SB++pSIfDFqqRCSGNaZXs5yzaDbY4avqIJcuzZg1lYpHGmeZCbY9T5Ur6W3rIjahSIcScak/w6nY7OqPl5c5fN86v3f1NADXzs5wvLH6mt1mETAWy1xLGeAt9Ve5vbrA7y2bUmW8oUnGSgymzHfeWl8yQkg2aO2LNvmJuSd9mehru/v58sJhej1TIjy5d4UfmXvWl5UcMM/tmCORWuR2rg/tpEXd6zMtuDO+6uv8DpNQE3lmsJhMsLhrSp2dC+Nc2Dvt5/27qsQLrTlalpV1tmyef/xFo144/yeSS99b4erMhD8nBT4YTQU7RlTJku19IwtQHjxoENB9j+9oBl0I8tJOQ/S4kkz6suNkuDOEQQETgNw6dJVACkWjQHrofgf3mcvJOBnCZwjSjmO7jGiygIl5PSbQNxIhvQf4z8JsWEPgt7TWfyKEeJKvI4r27babOjh0VJnHe4cBeFvlPB0der6e2GYS+Z4+J5JzFqFBKGRBL/fO0orfAY/LjETnG4WSUFSFwT8AXEoNRsDV+4u9AoDndg5wcGLdi9r0RGp7Io4mOqe2cHKibhefZA4UlzAVdIZ23omlxABoAf9+42EOWCWwd1TPDJHkPVg/z8vv2cOVbXPzv3P6DLFI/fsD8BmCw2H0dEhVpgVyvuEpm0yLIZZW16xetWCwriozGex4fIeZpkp9D6GjI26LF/i5hz4PwETYMVQWaBazhj/vYrnEIZXdedVkn6uDCb7cOgrAD00/Sz3ocbJp+gOL8RTlwtx9okPfIDa/tfJkfgBxkHgKjR+aNQ3mf/PXJljuR7xz3pAgnoqv0Qy6OVaCjBm57Xe8x8vLvP/IC/ynr90DwCvXZlmbanjMgFN+cxbLhKRwhQZCeTI+sER8ytBbF8V7eiqiQ/45zaDLXWNmeq30UMZd9av+b9cGTfZWt9np569/qT1Hadlcs5WVHkKXfDBw9CPOCT+7c5CZUpuJsJPzUOngOv1tS/xnL5eZcPvrosXdcwrFZLDjA7Pre7h1NTQmIV2vo24AjMvJuL8m+iLy/QfA6z24DOGhiYtU5cA/vppNccNM3ZjUQWt9Hrj76zy/zjcQRft22k0dHCpywEPxRcBkBofDAa4wPtCaTOcyomBKTDWRj7oiMEyi9iVFKm2AdloiFqlvSCcIWkrQ9eLseU0eDLdSQybMW33mH5h41jejzfcLlEqJ7TH1haKtDTiveLkF4KewzARN4INDIPRQWaomEsoy9el0R5uxUZcZHAg3+IV9n6O313zeZLBj9RjcREzGTKC4kuYoWlfOcbQfDaloq5yPaUPF7Al2PV9Tz1JuP7N7GDDcSv/NwU8ya1HeVZvZuGBRkylN2Wem4Qj7gryEZE+to8osphO+Dv1qb447Kld8JuB239tJ3qA8VlpmbMI4mNseXuRoadWXOjqqzJM7Rzyfz7HSsl9bcwyGstv1JAB+/tgXiMXADzXE0pSiXI8gFslQphkEuxwpr/I37xqWP3+pZwBqt8aLXG8dVfbrHghFM+j6c2yriq2jh0MTR5HImJTD6HD32dNhm8lwx5eAJsMOH1q8k/LnTdD98H117j92CdefXT1dYeJgDhi70J/hWHnZl7pagwozlum0OCFVJNID019xQXA1bZggZifL+lnEeNDxj0u2NOZ+w2I24CwWAzaU5UNSJkA0gp4fFjHHIDyXkltDR7WxlZqg6oKJ03143XYDy0pvdPuOBIcbhQos2cYo5BgF13doK8lMoNlSxdoorNrsISKv17tdtGNgdTvps+kMd5aWhmrpiBw56CaFHEvrdJCYZrKXBRUspGO+r3E1DWnIxDR3MX2SzO7KXUBSWvB8OsUpK/s5E+zSVSEzgTlPx8uU+Jqz4sebT/pzzBB2529ukp4O2FcQmGmrkqEytuu2rsr0dEpPh57czwn1uIC0mJUt/5N5z/5w12RU2jWkDWusa0g2oh49HXmKjgBNUChLbavK0M7TleoCtMeMfKl7gt+9ei+np8wu2Dl1V3MO0NxXu8B9tQtATvbmygcz4TaZlt4BSam4pXLN02m7iTK3c88QSMwO1znn+WiDAD1Esd3TEQfDDbt2NUOK5+myS8yEbf/6saDnAwiYJnhX55NCGQKlJbF9fUlkrGd1llQTgIPROtsqRqL8NdZTEQnSo9UNKV9ONdEMulwdTDFt+yJdVaYa92kdNZuH2ZltUiXhFrNO9Qc7PDx7genIPL7cn6QdVfwu/h2TZzxjrguCq+kYjWDXl41mwjZrgzEfaCORDZWJyjJBIb3zV0gOl1a5OLBlRUxQdEHX4SRcYx4MLmM9qw9lOBd2Z3zg2hu1SHToN0n1oEckMvqOIflG9RwYEe99O+wxrXUR4+5Qgb8ihPgl+/jPBX7s6JLvOSymAScjwY62HDTS1Lyd052RKYtZiUOhE1qXLGV1O3/teIpKtFXJA8YOhBtD5ZOBHft0bq2jQzupkzde+zrgYmIa2h/duItnl+f5Z7d9CICD4SYDLVm3N5XbSTdk3rRGwNFCAzpCUxYZq1ku7lNsBrpde96DqNhxROOAJuWApKDf3LBMsZ0CliJBMRd0h/AVPZ03zmsiJRKKq6mjcLB0G27Ki5SPb93hHfg/2v+nZmfodnnCBBKHUdjI6nbHbM8/2CWja/SWbX/mRHmJh2YuekK4W8qLQ6yrYAKCc/LbFjA3Zd/f0SUynRPtNQPT6HWjr0vZODPBtv++REvWs9pQOcTxKrnjjEVCLBL/+86E20NAq1gOyLRkNuz7Y2plVX8MyhL/FSnBJ4MdP0kWiZSZYJtMm/7Buld76/vA68o3nivJTi5dGUwCsCfcIhIZa6n7zIyfOvIUa/vNZ+1kZaTQ3HnK/FYTYYdm0PWTRA/UL5DowF9jTdmhq8rEIuFKYr7jlc4cx6srBRU248hdZjEW9Lg4mPaB3OhYD+tar6Zjnp12KTGUNC4LUELSpeSZZct+k6F8KSpD0gy7PlNwa1ok6WvIXd+w7ukb6OpGweHbbn9lVOBKv8FHd+4A4Ecbz7GjBUtZLqxTEjnHUEtJ9gQD3yRVCE5FW3S14MXBHgD+0+r9/MDUV1nPzM09G7QpKqR9qnOSyXCHt1q1OYnJMoYCCJJlO4J3rLrKuXja77i2ddlSX5sLfCboeAbUIuvquEyGwHqxLT+BddqFi3NSDnyvAGAhmeBaMsF8vQXAxnU7ppowTfFL1vF8ePM0D4+9yp0Wce1sNWvQs9lHcYQUDGiuq3LsxKqqcbp22Y9xxiIlCvJ+Qbswx2/WzdT7i5TObVWxI425StqPTTzhA6i7uWuF0kMREFeTfY+XKH6X29U7dlRXGjsYbLKuqrRTp51srpOZoO1JAVezMaqiP1RCiWVCg92hY2mr4c9w/y+JjJYO/Y65Y/EFnotJlUAOfEM709LzKgEobZq7q2mjQLzXI9EBi4l53Z5oi0wLrvSM4/7ta/fx0NxlTlv95q2sQjcr+/7Ll1aPstmt8JZ9FwEDYAM4anmwltJxGnLXl6X2RC2DrUD6APXi5h5mSm32WufeVWWW0nEfDFbSMapy4INiK6sRi4HXgVhMJpgJ2ywl4/5cpdD+7xtpnRd29rG/Yj7/ZLzkUfg9iweKRcJ8OdeA6KvIcmfZklxWoadLvmGdfAOa9b+6jYj3vtX2TaMChRC/APwCwPS+EndXTLOwIQW9gqi9wpRgnNt0dXO3I3KI5EwL5myP4OHmOQ5E6znVgEhpqxJdu0t7fPso06UdTtqST0dHzAVdPyEVCE1JK58OHyitc/zwMjO29h7bdNvtXs8OZpkLW7RUlSe6Znrkweo5Mjp+bLR93ZTIxWSaQCif0r/a38OD1XN+x3x7eZG7ygv+PaZ5nXqnuGVxDw61DcZpdVXEuHVSCmFuLuu8m6WVob9XhQaZ+mzlsC1buZKQ6y84USNXM/eTQxJiscNCwRFuq5gM4fs17qYvAuFikbFalHktTCK1VYVfX38bhypmdPE9jedZzQpOtUC4B7CU5VQQgP9NiiA89x73XE9HKCX9Zy6kE758ZT6jRCRSj2toBh2iKH/cUSWaQeqPYS7cMqWqQnB/tnOQ+bK5fv5s6yBPXDrE/ukWf+PAE/5Y2gXsRqIDntk5xB89fRqA0lrI55KIjT1m7R8cv0gj6Pkpruzfz9LcVnz83XcBsO/tWxwqr/mMLEBRk4OCEpxmLOjRUxF7Sy0A3r/vBfaX1n3JrqelPxcwZSbzmzgVP4Myd5smMwhQbGhLj4kAM710S/2anzzKtKCrSkOI51gmtmltp/zkYIgQcFmN2/KqJcW8USA4jZk9fxPYdyo4fNOoQBtIfhXg7rtL+pRFsy5mRh2t2FTeF2RsuRq9hqlA07E9CKd/XBUZid1t3FI2KNrAvmZPkLCc5WOfPzr1NG1V8Y/nrBqZQ2XHmPLLLSVTCjE1ZeFHPNs64kDYylXZtHHoPRH5i7gm+xwIE15O8qZnSauhnXtHlfnImrm5n/jSLTz38Dz/ZP9H/N8bImXVSTjaCSm3A3efc1f5ij/nVlZFCmV4mDA78n3Rpt8Zm7p74rOuLeX4m4ytqzJzhVFBibYaD2Zdnuoe4dZ40Tvb84NZ5qItfyPHIuHMYJ+50asX8/OQPUoF+dBES18GaitDn+ACeUeVSbX0JYjVrMGU7PjsoiFNH8R/pzQOqiia08qqHlnsLBC5BnTJjsLOWf0Fx6nkx4gzw/Wz32IMis1wc54OH+MazgYI5jKTmuwzHu6ymZhgMlnqknUitmrxULN2Jtz2JadL/WleaO2F0JyHPtbh4MQmtSDXULg6mGD5BbPXOvG1LeTKJuOHzJTXxQen2BNt+T5JI+hZnWuzboF0E2fKH8P+0jptlfcluqpMNex7bIQbwS1aMQDCcHM7EhkS5b/TnGN7CB1etRlWMXib36Dr17irSr40tSfaop1V/OPrv//12Kjn8C20G4UKlDgSAeMEF7K6b4QdjTaIReAv7g07fubKM3OB0W4olmQasmeoIKyD2VABVZmXjW4prdJSJf9Yom3Jx/Y9VNXP6Ttr6dhP4BwIdmjr0O+4zyUzbKR1Hqhc4J01Q3jmlNxmrMjNmWSWmWDbA+/mw00GBNwzbsoGzx3bx3jU88dkgoEYQkyPy/51GtSZmdYCYp0Sh4kB17k6s1Vku56Gw93wW6pMm3yqyb02xz8o2lr4csldlcsoJL+7/iAAX7p6mJ85+QSP1s7490+GO7T700Q2GNSsfrIrC5RQlr7cOM4ppw1tz7MZdHjf5HP+O68nnMsyaUZFbTYTKG25lhwR4/AYsrOezhH0S+k4Vdn3jtmhet2UzpM7R3ly7RBfDQ3y+3tnX2Zf1PKTP7FtzDqnupqOGeqJAtGfRPtg8fDYq8h7FLOlti9NmiCZ75g/unAb7c/PEkyZY3zXXV/jSGU1J1YMdknVFNFWjhzP5qfpzpm/7y1vDUl6trIqGdJnbrFMvMCQyyYcTbizRIcsJ80hXqmeipizG7elxJSc3HmZElHJl5G+keN2x7CV1ZBCDXFGOQW8YjbaUxGTtrHuCPquLy/eEBsFh2+N3UhUoAICO53UEFBTAxKR02WsZqkPBjNSsZpJP4mUaVOyORRmXqynIRJioQp1btOUdXVwZN4TAFOiCUTOurqajTET7A5lL091j/rjHau9NNTIHZM94ihhXzDAVeiXsxLjMvO8RgdCMzHjG9YSJkXPB5Ojd6zSkLv+vNy5F3ER7jkwwSHTOcPqkqrZRl82hHguAvEQivWsxnxBj3klbXCX7VNURWqyDvtyZWUsA3tMzaDLlWSKit3NHphocaS8MgRoOxCtc6K0NISKjkWW63FkpuzkMofVrEampb/pa2JARyRDJHcrWU4mFwg9JBUZ28DglOK2VU7nULQp2fGf88WtE6z3q1TtUMOjzbM0g1wM6M7qFZKpgD968U4AJstdDs2seecXk1AVfR+wqrLPYjLBgZIphS0kk9xaWfDN1algh4ca54ecohO8+fTqKQCWrzWZuaaJdsyxf3V9H/v3bdIoON658haDE8ZxX/qBJrv7Ux6+0yTr09EOiQ48DcVkuENcAFUuJeNIoYcccc2C0ZzjdcpuLkPqq4j9pXW/88+QDHTA1cGU/c6clcD9NtdnGpAzx5at8JObknLn1VFlj/doyN0hQGOiA7ayCmXHBFAIXK/LNKYZ9Caw70Tm8IZGBY5sZCMb2Te2UUP6W2Y3EhUogbowu7ANNaApBxywu7r1TDAZBJDlO9GZQLHkpxYMuK2n8aR2M4GmrXIcw7jMjNSoJ+bLfH8BzAiqJC+vmDFEQcvWTptywN2VS36HPB0kdHXO+noiWqelSmyoHFPQlAOrueBYNs2kkBszXc0azBSU4Fx673b9YCY/XBlpXPaHaCzMWsWefqEpe8Qi40o65vsG7r1FydEZmY+6Hgo3mQnavpeSYJrebm2WsjozQcdPKblRyB+eeAaAs9U5YpH4neeY6BNJRes6CoV1VfE9hyLq2xxbwrqqk1hyv540dNsfXTe79rvHrnC0tOqpK9qqQk9H/IsX3w3AZK3L3zvySVqF8lORA8nZtor9Tj/VkqvtJkebZqcfywSDpLBUE+EOh+M15mZMOaUSJBbZnZP99XQ01FAG/GPXwygqywUoSiIbIqVbSsd5ZdFM2JWWIiZe3CFcsNkHhzn3UyuMj5my21y4RZKE/PU7DHeSul1QD/qeedb0GHLsRTuLSWQw1JtpyN4QwnmgQ6aCnaFpszG566/zJSsXO/AjuxkKyXHLc+WQ6sVM7uvpLbhj2sliSiIlEtnQ2kUiHcoWJMqP8ALspGW6ouTP44bZKDi88U1j2FWdTQcBl1JbjgkUSmsTIIDlTDFZ8JEDLZkKNAOtvVO7mprmsSO9M4A16dPbyIK53HhoQyb0tPSTLwGaZ3uHfD34vfUXmAt2/GTUWhYxHSRsaUcjYZbfsbqa43SjnMOc+y6AHQo3aeuc7tqNXjpE9aTsEQvlG9INkQyN2qKlreXn0yhnkynmgy0fYPw4oGvuBQM2VE6k17fltrb9zppIaevIr1NNDFjNat6pnu3PsZnWeLB2DoA74ysG6GSdakdH9FQ0NDLrGDaXMuNo5sIt2qoMdO0xDoCdQgmvRBwk/NC0cYI12fdNaGcX+jN0rxmH1KlUWNw/wdHysl3HbQtGLA29JypcX29vnuH+sYu+x9AIdkkI/OsDrbmlfI0P7H/W/FalNdvczZvmNdknk3kgrxa4loChUlkkUqLAUHq7en/PrrPaNNfY1BkIzi+idk0A6k8YEKLT7w5QlGXCgzXD6np+MEND9grUFQFKCz9hZH73vCkvUV50aeA3DUbS0x13OyvTDLq00qr/zm6B+rurygwIPbLY4SpcM/nqYJLxIPTBYCursjfaHKLXMLgZ6cWeuqpMW8W+j5HowGo42LFgJHPlLR+wbphMqAayNwdE+qYODmDpLzDTSH2tOB66G1sSiYCXErdjCNhSqe8fxCJlNTPNWecUHWDMAcS2szLnB7N8ccvoNz8wdoEH4wsF/V1JoiWf2TZqYrOlbZb641zqmpnzeysXmQt22LC723GZkBSosZ3oebvAVVSVKW0VsV3QDK6J1CPBMwSB1qzaOvhksMNM0PHnoBC0dTjUg2jIxNNnl0XGAMmSBT2dH8xyoT/DI/VXvFOaoU0J5QPSWhbR0ZFvik8HCVsqoOd27ZjM54o9prlgm/W07m/Io6UVetEwPUdg6dABLg6m+Nrufsoy4W3VV+w6JCwMJvidZcPc+p7pF4nFgKZnQI2IReqzj3ODPcRi4Pl/zC+uvGO+OJhmJy1z6KTZvZ4cX6Esk3wMFUlHRSQE/rmSyIhlwpQwwaApu4bOOqsXvkP7XXYz6NJVZQ6VDLbTkOjlgdmNwrqGdMsG0CLOIUOAJ5M0eUksB0RWtKqryuyJtnjLPWadnp45wMZtJ9F2WmnPHUtc7kzwx4u3AXDL3hXeMfWKF+KZKYgpFc0FhJ6KmAnb/loYZHZ0NmAIzBeQ+fOOAiPc5DYcfRXRTcs+O3GCQ05Jzk2JOeDdyztz3D12xTv+WCYWLZ7jRzLMJJobOHGsrkVUdmDxGJBTsriA09XDWek3bxr0KDi84U0DHZ2ziw605poa5m2ftBuGRMNyVuGznVsAeG/9a0RCcS6Z8BMs67JLTfZ5vHscMGjLf/ncuwifNc5g9fvqPHLonB9FBePwPzhhNCVaqkJUzQgmLCpX9j19NeBlSZ2TjFBEQlEVmp79yK4KTTPXIXvlYJhPRptG8fM9IzW6J9zirvLCUMlFaUGxkrSVlf0E1vl0kvW07qc5/l9Pvov682U+9JY7+X+c/j0gnwxy52lU4Qa+TNRWJa/mZtbWBIeiqNHBcMPv+l/tzzEZ5rv8maDNSlYnydyNnfLJ5VMkWcCJY3YMOJUe6AXwJ6u3s6+yTdNKsM4GbXo69J95OFodKh10LUq8haWuCHpc6EwxUzGO/uGxczRkz2cBLVU1GhGqnKPTRTqk99FWlaFpo56O7NimpTrP6mRa+vKQWZv8FnPUHNeD5lwjtxl0hjMHMtqqQkflehCxSGilVX5o+lkA7hm/zObJGjsWoDZbavPJ5VPUP2ve8+LRIxx+bJ3J+jAr6fU7aVcCSnT4mszheuupCCkVgeckU0MEgs6K6nIdVfZjpftL6ywnTS7sGvqMc1tTTJfz42vIHgMR+te7QLYwmGDaNtoj8km5b2S9QtN867pS3uuyUVnpjW9Kay9t2RAOm+Amh1ImC2WmmkgZEHBHxcz3OzGaL3dO8JkVkxn8vcOfZHEwwefWzePV3RrxV+qk9l6ZKndyxTWME+2h/Q67YRHC7oJtqRIZwhPzddQwDXhJKNoqop1FnB+YOfTbyteYlClS5fQZPQI/Dptgyi3uO9bSMbZLa742XxZ9qjJlyU3tiAHjsu9LQAfCFl9sn+QTi2baRa5HNF9NWZqu8+qtRrfA7b4d4MgE0SnvrI+WzKSRn/yy9NquHBWLjI0s5kRkULfblj3TOcP1rEYsE2qYm/7cYJaF9XFOzq36yZ6v7BzjgfoFfmbuS4AJMBd7U36k062z6wcFQhGQj6o2ZZeeDv00Uiur8fDkeb9zngu37Bjp8FSXspM1UNCQFq5UIYZAbq6UURzrROTjs4ZtNK/VOxnSPPMsW9BZnjkopP+tA2FGhIufn2k5tLOvygGNco9rFmD26ZWTHG5s8Fn7W+qSHmKnjYTZ8RdLZw3Z8/2DWti3AkBWQ1pFNILdobJShqSnSyiGP9f9dlIoJoNd3x84uzvL5c4kt41d838P0JysmizuyIFVulkePPoqopuVPN/Ti919zJcNPsj93o40sRo4rEUJRE41jjC9Cj8Rd6NwDqNppZvDJHlm0NPQkIFnTI0EnElCXwLoqDIHonXiAq12JBSNoMeD0wZlvZKO8f859yjra2bHc+zACq0Y4reaMsF7J58f2nFdzsY5Ea35hm9DKAJy8Z99wYBVFXpm2L7WNIT2Y6oZgnGZcNaqc4EpVfV1rpnQtbtyVxaKhKIhB+y344+r6RgzspvPoKsSU6Lvx047OuRSOuEdsxIDJqIO1cisw8EHX+W5+X3ce+Aqx8vmZq0Jg352TmxbVWirCv9xwSge/sT8UxwtrVC6jiN/qLcBXLQI6Llwi4Q8oHV1mabo5rV6ofn+Ey96HiUwN3k7i/3O/v7qeU7Fi0OkdRmS2DG9igGDwnf0dERT7noepGbQoRl0hhhPMyVo6Rxo5UR0nON1n5Wjp41qmwuSiQ6YCdvEXgQppCF3PSo/0SEK6XfiDdmzQcyul4q4NJjlUNlcX1PBDtsqQtl16WL6Gh1V9gEmFgmBUKzYEs18tGmo67dNKfPCwjTMw4P3GTW7yVKXw3E+TtvBBCSHMVBaDjWW/W9ZcKYObOieM431ks823No5R1wVuxbcZ66fJ1YO0fnULGceMhug9x59ia2kwsGKITB0Y6aL/SYAnzx/EnWpxp67rL53pTOEuwC41JtirV/jbROvAoaFtRr0c3R2VqFayG5vqKcbZQ5vfBMFOu5JWeJSmjJj77yGDAgyzVd3DwLwn6/czcGxTf7O3OcAiMM2SgserZ3xUzkvD/bQ7UeUL1p08ZEBh95zkbdOmWZeSWRkCPbZRpqbBHLv79r5fve4pSQNkbKeuYAijGqWczoIujpgPtxmyQaxJ3tHeEvlvNeGaCs5JDCUIeiqiGN2V+4kSyMHerIz6ht2t76uaqymYzkXv8h4qHqOU0fMLi4WCWqvKZV4kJK96V3DuITZHX/P7Kv2GCRf7pzgIdtgrsq+AaMV7plIZH7XLguKbQCZEiyl475+fKk/zXx5kwPRun/Nu8dfQKI8o21XmZ7FAZudXbHO0aO4LUjP7Xi7qsxSNub5ntoq9kR6YJzZ1cFeLxZUFfnu3QWQjaxu0eMWHBh0WE3H+PfnDZiv9eokd993jh/fk2vIRwWUvrQ9D+eg2irmld05rzl9qLTmkdrgdBK0L+TEMmE9rTMXbhU2OSVimXDMovBNWSvm7U0DKCzdmrK8O8ZdDYNBmY7adFWJptVjvtSfZiur+GAzHnQsXYZjljVlNBe4JYpndg4xFXX8huRcfw89FXEs/sY4VcefBTBZ6bJVg+Bps+m6ODvF6m7No7ir8cCipO26vVTnwGd6nK+YstP9b73MgXhjCJh5tdvkxYU5Dlj+pcPxOj0dcqFv3jMbbZOonFvpRmpIj4LDTWBKa6/0tqUGlISh0QAnYBOwMjAX5PaXZnlq7xTvnDTgnzHZoyEHNETineGxaJWfOfkEn2iavsTWIOYH9z7vHc5ntm/hr0085YF1rpndkLmGxIYKmQtccNAWqJeXiBT5qKxE07MUGy/aHsJL3b28vXrWl8vA7MjXCw3qWKR+cqhqJ4XarhSBHkJ5TwbrNGSP53tGFnIzrfGexvP+xp0KOgQYIJ8rnwyQQzfigIDJYIfZyDja/7RwLxcvzrJ5r9l1v3PsRebDlp+YcuacpMu2lqxC3tOdw7TSKhW74/795+6h3tzlF099lgcqhoI75zNyjfqEjs7LZU25S0eXPD2GQyt7ptdCXwByMFup0CcpsrYaWpR0iIJ7Mtjhz7qHcmqT2KzPTtcE3tKmJJQqp+QOevRUyWc3gVAkKvSiNI2gx8nKElctg2pJZBwqrRVGWE2D1a2TQyUb0kCzhmN29NSVttwkEbas+MjYWdaqY55GZC1peJAaGMBaNeh7MJmT93Slv+vBggBjYY/JcMfTW0yEHT9eChToRdKh97mgeryxyisn95BdMd8Ryoy373nVl40ikVGWCeuWNgQFCNCR5UELd+lmZapBny07EXWqsczU0Q6hZUC4NjD9rcu7Zm0XgybHqznQ8sZNK2nIsr/4dd8FdlMHB1nIHKaDgK8NynyhY2rpV3qTHKqsMWv53vvTCjEQXO4blObbqq/ipC8dc+uGLnF/9Tyv1k36+/k/uZvPvaPHj+wx45F7S1vWOTtkr3nvwDrmtpLsCzKWs1xjeVwmDApKc20VDY2pNkRKLOGQZcU8UFqnrSOaXm9Acj6Z9s68i2HAdDvipuwyKXs+AGVa2L6EG79VjIl+roAWKsNB5amqA2I58A1xZ0a61OoxF7IdgExJpvducSxeteel7Dml/jMzxNBu7eJglt9cfBiAl587SGlLMPGA2Xke3r/GnmqbfdGmn8LaVjElkQvZT8mOr5e77zCNcDsxI1JTilJ547Epuz6zGBAwG7QZ2KLOgWiduXDLB8Av7hwlQPFI4xX/foXkYHndOxanO/AjJ58DID0uOVFZ9qUMF1yKimexSDzHizvWg3aaaaADapZy21kglA8mTnVuKW36AOIQy5nIaT8cpYZ5v2Y63PZjplGUcW3QpG/LkgfL60Z1zxMzBgx04Ms1Ndnnue4Bz5NUlQM/deQCthMk6hSuj6K5z1ZWc+JEZYX3nHyJyi2WAqbcoh70/Dm5KaYJq73dP95jrRXTmDNZgUTnqGrrsaajNuPhrs82qkGfjyzdydXPmU0Qd7Q5dCrPRK/vLb0uG2UOb3wz46vm34tJyK+tfA+P/4EhpKte0/zx/Yr/6rFPAPD+R59mqTc2dPM7XeOOvXAaIqERbnO6YXiLVt9R5+HJ8+yzpZujJePMvrR7BIB94SZx1PIlnbkANlQOQIutGNBMYP7eVmZUtWk3MQPbUE80HLMllbYqUROpn1BqqZhfX3yEBycuArCSNPjk5ZO8fb8p6fzM9BfYUvk0Uk2kVszH9hgwQi2OO78mBnQKUz4NaR5XZeL7HOtZlQ0d0rT8RabmHHLMnv9/efhzQyC2maBN22pXO8uQ1Cw1X0dHrGd1XnnalPjiTUl65w73TJvSx+n6ZZpBh0Ao3/T8D9ceRqL5vpmvmbWtbLOS5jv/yWCHKdH1u1NH5ewygVgmbKvYK7uZMUfhHdFc2KKnI+/gdrOITlpmtTLma+nNoMOx0oon45sLt1hMJjhYXrdrt0tgqSUAVtIGF/qz3Fqx9Oda8kTnqHe0t8ZGk8I5dqUlmZa+vFaV/SFcxaXBNFtphbuqV/xu3gHvihiAuEAbMiZ3CQTE9ry/2D7B779wGrlgzmH+3mv80L7n8h4Xgf8MgCuDKaajts+WdrLYBrzAayXEIqFH5INCV5WpB7kEapH2AiBRAafrl4cyi2IfZSrYYSkd972Hn777cc4c2+P1rifDDokOmAp2hj5ji2qB7C9kT6XNuaPm8f6xHTu4kY/f3jAbBYc3vjn1LjCozM9/5k6OfdRc9GJpHS2PceEtpgb5s9OfN7P1DgmqI9ZVjbP9OT9bv6qqBCjus9KjDxw8P1Tvv5hMcn4wy7VBE4Bm3amSGVvMBEa72k6SiIxY4Jlh3VRPy2vQClazCjWR8EpispXFZIJ3VM94quqaGPDz859lwQqt7C+tM3G0yx0Vo5DWEAlt8nKOBFqq7AkAHbLY0Wm783GltI4OebZ3iIPRuleMi4WZ/3e77EyLIe6cq4NJ7qhcoVYoGxVBbdvaAJRcTbkhBxyI1jn9kOlZ9LKId06f4WjZBBs34plp6UsX1XDAg+MXPVAKGMokDD5g14/XTlmG3CLArKcjNiy77b5ok1ZW9RlXhqQhe95BbQxqfOXCEc7PTvHwtClt3VXdZaADH2DaKqYq+15trqUMAV0xIN1RuTpUvz9YXmehn4/k1mTfl6EGOiCz5SwwWcP5wSwfXjEbnJefOkTWTMnuk37n/LXOfi52JjneMFnb4XgNwpzxtRHsspqOse11KjLESpmpr5nf6nJ1D5enJn1D2vR1WlyxFO4Ok+BMaclWVqGdxf75bVXxus5gSlU9FQ2VbvZELd/Ano83WE3HWLb6DftLG6/JmJpB10833VO9RD3o+QAViYydLGadHDvTCAyX0laWn+fBygZ778xxLmWR+mO8cZmDHk0r3QxWRhHZytJGVqeyLOBVs+vPOh20PMZdNTO62hCJHx0FmLIYhGKZ6Lc27uVAvMG7LakdGAf/TN9oAH9661aOVlZ5rGH+PhO0jRKbLae4YJAVdn9djVera0gFovg3QU9HnB3M+RtpoT9BVhVDFNszQZvDNntpqxJz4ZbXbzifTjIXbPtdf1uHnIp2fWkrQOeKd9YicvDQpOxxe/mqAQx5bEUfp/YGrvSU8E/P/hAASxem+NlHvsC7GmZX7xrObta9aam2XT8g0IYCwo2lumN5sT/vj2lftDkEYPsbs18hFslQQxpgn9XGaOuIi+mEz25Wsjo12feTQW5H/jvLZsJqJt7h/RNf9SO/TinOOfq7x67AEXhhdc7X992kkOtbHAw32FaxzxS62mhzJPY2GpM9tlVM4qZ6rAM7bEuGLsAWp52MYI7VLM/MmOpa12QBeq6P2CzRSipMWtW1j58/RempOvIHjIOaL2/yQnfe1+97ukTJZo8Ap2uXuPbIOF85eNh8ZrvM3lKuvTAXbnFusMeXeHoqMkC/AvvpZ1dP8Or5Od5/2pTTbq0tUhI51TiYwOkccDcr0wjKPhg4BTwHDlzP6r7Maa6HAd0ChcdABxwqrfksz40MO9Q8GEGgDOEDyFNbh1jebfDojMmo90YttrKqP6a16/oo37Rp0CMQ3BvfhBA0pTmFA9E67eMZHDeli2yiwvoDmacNdlxFbkfeUiUm5YCZaIsrFkC03B+jlVR9JtGUA9o65ExvLwCfunSCqRM7foftZEEddCHBlIhcSagqNYm2QQGoCZM1OJrwjo742PadHCyv8+6aaZTfW7loZRqdqphin0xZVflPtZHVfW39RGmFK7aBCXA43GTjOjyFkUx045aGsbVlb7KzyTSzQdvQKDhaaJtdOCcXoLmSTLCxbZxWtB2wntR8GcmhUV/znV4prWTq3IWy01I2xvNt04T/1PO3UpnY5Rdu/YIvd7ywu58Ha+dyenShqMo+W3YnOCDwIDEYVnAD1wfJ2BqY55SWdMfLdAqYgp6OaAoTXE6Ul9kzucX94xd9kOqoMiUrNwlm8itAF77T6Cq4UlhHGaU/14MI0CDSoR1yT0e+efrk2iEemrno1djmoi2uDKb46cMGVLm1v8ql3iR31Ba5OjABZazWY+dBzamGmVZKVMinrp1E2PLa3zr0Fa7aLBNMhnT/2EWmj+343yrRAVWcvGoll3PFNOaLWJKttMrltQlIBbtZnqFupHVfNtpI66wlDa50zTEu7za4vXmNKTuVtZHWmQx3WEyMs68Hhr5jyzagExEwH21ytm/4opq6y2Iy4TOVquz7RrnbRAV2Q7LUN2v51OWDpOsx906azeCGqPtJLcCzs94QG9FnvPFNaU1mHc6+oM1PP/oFfjN4BIDm3m3+xa1/7IFYsTC7+KOhc5IGldzWOaHb35z9Mv9x7UFeHphgcGd5gZ4OeHvdZAr77jDjlkXwV1Wk9GxmEAtFQwqWM9csFJaDyDakMfrTTsoyQPGTzcdpyHxiqiZSYpmxZHd2MSldPYwE/c3FhzlcNzPi81ObxCLxI55tFREXAGodHVITA/94XZdJtPQqbHPhFrFIh9TmEiQ9nRMOBmhmwm3+r6eNoNDy7eMcLa8MBQPIR1/de9w5ucyiZDOGnhUCemDMlG+emD7IznqVzbTmHWs3K9FTJZR0VOMmy7tSULBbTRsctrtRlwk4krsryRSraYP37DG/XVkmxDLxZaQMQakgFhSLhDhMLIdTToSXaemd+2zQZl3V/HesZ/UhR9rKajSCnsc9DHRAV5X9Opoeg/C730sXZriyPMHfvOsJe0yGIsLt4htyl8lwh0SHPoD8+GFDuujGSltZjf2NFmfXTfl0I60zHuz6XXhV9imJDFU26/j5zeN8+soJ7p0zZcn7x0wwdOuwlVaHtBemozYfOPksrbTKkYo5hkQHlGXecwJ4ZuMAC582zeBoBz5y/xS37je4maP1NarVvFQViwGr6ZjntVpIJllKxtljg/J6VreTW+a36ipLABjsDiGeXdYAcHTPGgvxuA9042GXrioNDXLcENMa1Cg4jGxkIxvZyK63UUP6jW9CCBJb/5sLBD8/8Tjf+54XALMTnJF9ahaDsJ5JT14HUJUBgVZ0lGZf4LKJLu+bfI6D4YZ9LJkqNOea8SWqIqPrZu/tNFKREjvRmqrXsRa0VP69GypgXGZM2TKFtKI6HR1yPDQ7tWtZ3oQz/1dD46/bKuan9j3uSx3jsg8KLlr6hLmw7fsq7v0UGtAOm+HAc64cNNC5lKgUmqYc8PJgxn7mFg3Zo2a1sw9E654QECiUflyDWgxRbMciI2cbMscshfLo5//h9g/z3O4Bntw4xN49LQC+b/y5IdrvGM16VvMN5Wd2D/P7V+/hR+a/CuC1xN3O8tnOQX7/xdMc3GN+y3fveZnz/Vlui80kUWSBfS4r2Bdu0VIxXVX235HoAIX01CZBWQ1xD7nMwwHo5sIW3cIUjlkT5SeJ+ipiI60xsCXCytQu/V7E2R3z+S+ovTw2dSbHhyBpBl2W0nGk3cnvCbcIhPaN1lgMeNfUS5ysm9+mGvS9OA6Y7HRbVfy6PPPlkzTPwGfuNyPDdz66MCTrua+06UtPYCaJ9pa2mI52fAbUtWXYcQusW0nN+TmWjqQBzfEOt46ZzGEiNFNlrgleszv+K1b8J0PSVaWhrM5pQoPhfXK/k5uYikRGV5W4tbYIwKHKGpca0xy12U3faqXninjDCo2vx/Qoc3jjm9KawDrmnja0BEftBVgSgo6CyP69KRWBEB40l+iMxazkKS4AZoJdTkXXeNxOl+wLtwxFh6X9bquMROMpuBNtyjhOQ6KlBA1h/g/Qy0ypKfKxIyPA6EqA0ZyIhGJGwkuJvfmDHBXtrEgjPh9u0wy6eb0fabhq7I2baOknssA0bmvX9QMCtO9BzMiUs2mdpux5vMdyVgEJ85ZIzzUEcWUmLVBa0rYN520VE8uEmHycNgKPk4iEQmnJiuU9chKgTlOiIXc5GS8xPrPrHUgsEloqpmlLOC0VMxV0vOqe0pJTzZVCELVlCLtsp2uX6Zwqc7xinOb53RnWBjX/+XPhFgvphA9Qi+k4A22wEI4wsCF3aWVV/uiamR76W/t3htbeaTm4tY9JSERYYHo1a/7cjim3fOTJu6nMdvnBY6aR/67DZ1jcHeeEdew7qVmvIvFdK6syGexwzTaxz+7u4XC8NoStKE4YBULTDDremZrGreS8JbnLGhnrD2hOnVgcOkY3JVaTfTItfKN+W1UYDzq0VYUvbhpCyi+/cpTmZIf3HXwRgFsqi2w1Kyzcb9Ztst7l3ukrng6lJFIGhXHZpXScqWAHZXsWHVVmPNj1E1euqe76C46PKhaJLxtNhjv0kmY+vSR73Fpb9FTle6It2ir210v/RnErjcR+bg7TiBwIp2FvWGcls5QNQEMKkoKTleS4iKowDeeWygFjmRB0tOJoZHabTWmwCYupeVPJfpX7jAzBlXSSL3XNDujeygWqoovrUC9mDTqq7DEMM4GRKnXTUQkGRNdWuYZCoqFbIGdDSxSCBeuwMi2ZD1s+AJhdZFQQlEmGeJEaIkEV9J03VExT9n12s6EC5izl96JD+trAkesrp0Qe6GYa7hsFBxYIRU0M/Dk4Sc+mY9NMxwxwyhPzpfR0yHoxWIgWzaDj5/xdQzunWE9YL2hE3BYvsL+07qeVEh0wE7T9hFRN9/mRiac9VXM96PG1zrx3UFXZNyysBVF7t9t2oj89HdHKqpQDpzNQGxqt3cjqxDLxUzWxTIZ2q11V5lJ/mmfXzVTW1DMBm3fUaR8ya3coXjeCQJk5hl1VoqtKPmBdSSa5tDvNHbWrjNvvjcoZAdrv7DuqzGy4jRI59XhREMftmN2O+ocfeIbxMJ8UurA7QyxSPwiwntWJxcDjAppBh1ZmpGTdOgipUVp4NPJ8eZMTlWUGhyw+JOz66Sn3WxanviKR+b4CmOxmJ4tplixlN8mQBnUrq/pg53ohbprKBXu3Fu4ae65zgEwLjlZMT6rIpPy6bES8950zIcT3Af8zBj7w77TWv/KNXquBrrIXmBDsqB5le5OsZRkNKahaPv1VldLT2g/fLWYlXh7s5cmdI+wtmYvwBxrP0dbal4HaygQR6R1riQNhQtteHM4JuBurKfv0i9NJakAmpM8UXGBwx1AT6RBNBng9FH/zl0RCWWTMFVTKYpHxvG2an4xWhug0Mi2oFgSJEkuA1nD6v5Z7yVGAGI3scAi1HaG4lE743SOYxnZJ5+O1Tdn3mUFT7hqAmVM0k32WsjqJztXElJY5mZvENslzkFwkMr/jBuN454JtX8ooWfZSB3Z7sTfPme4evmfcTpYFHRbScr47tWOUbkd9rLQ8BKBaSsd9aQ0K9Nm6VKCDyJgJ2/z4XsOd1JA9FNIPIEih+Nruft8Y3RNtDY0MD3RIV5W4fdLwN33skQnii2U++rTJRN5/31dZ6dd58gWjMy4qGd976gyNhhXuses1Ge74wLWaGr4oV6oqBisw101Hl9mxKOtpm2kmYd7InS9teqxOolyQKfl17KnIf+52FvvPuq1uso2DpzeIROZBa30VUZYJ+8uW50sa1TbXWG9lNYvEdtT1fS985I45Q/og2wwMkaQbt91I61RlnwyZ4xVERpkcpW3AejlQr5+FKPLmf/0GlZU0oEf0Gd9+E0IEwL8B3g1cBZ4UQnxIa/3i1309jlEG0JpFlbEvcP2AvKQEw6UhMLTR/+qV7yX95DTbd5uL9O63XfaaBGAoOZYzxYx0nzNA2vo8GEW0E9FqAfRmEM99m3ZKoRiTPR9MnLkyU1cLuiqkKnOytnGr+eBCyAuDfRyOVj0V9VywPUQbXhYZ3cJjV35y2YkzN8qrELRVyaN+m0GXphzYEVfjIK+k4yyl495hHgi3mRaaxcxNWWleHuzxfY8OZQ5HLR8cDLV15jMPh07OjyUhQLNiyeTGZI8X+vuGxHoikdLRkZ8ccrV9t6P92MqtnHllnlvfds2eR8czloLZMV/qT/OJLSPE9Ojkq5woLxXoNjJWs7EhDiYjQNT3rwmEohkMj0A25G5+TCriYGmtUP9Phii6YzHg1soil6Rhhg1Kij1PJmyeNE5/7c4ajbBPecI4rlIp5dnVeRa6JrC9b/YF9jc27Hy/Q213/fk6a2cVz5VEZnbabsy0JDIv0wpwpGxo0R2I8lR8zeM5IEc3u0BekwP+YOMY1TDh0aZheh0Pdn3AABOAezry3EizpTZS5r0WpQXNoJvv/h0rsXacZOFQ/6edGWlWd671oIfSgr6KfIZUnACDHIjnspMjVZMxbFkwYHHj8bpM65HYz3fIHgRetTrTCCF+G/hh4OsGB4WpzztrSEVbOeUny4evM//a4uURCEWaBewcUpw6ZBpnEsXHO7fy1qq5CTIGVIVmyY6mJoSgUmKh/ff1df65JSFoq1xoZzGd4OJgmh+umxrzpDR9Dkcj7RqfZZ153emMAWWR8W8X3wnAE2ePMD7R4V0HDOvmB5pPEYuUk7Y5fCaZZaADDkfmZujpiEArvysfIJmR/SH2mwwxJM7Ss2ygvYIDOj+Y9bu0lirRAt+cb1lyubxMlLCU1Qq8Rwas1NLmxnTyn15WUsWe8whgJWvQVxHnBrOsRWb3aEBQDf5s56B/3T31yz5L+57pV+mlkc9u1tM6U+GO323GIuFza8d51VF2PJJyYnZpqLRRFN5xjr1E5sceeyqyTWHjiNezOutZ3Zc0nm4fphIMuLdumuFFeU+AmjTjtttWEERlgqWHIvoz5u9Hq2um/GJP8QuXjiI+O8Er+0255vD3bHB7bYFG2PPn5ZysQ213VNkgrQuKdpPBjh+x3VYV+ioaKr84Zw6Wi0uHPsANdMiY3PXOdzVtcKy+Rl/lnFFuxNZl1E63+ZTVZ9hMa0Njrg25a9XjzOu3spofLTYLY4WUHB+YzIgLWUEz6HogplsHlym74ZCeMloZrllelmYDMl42QXMjzQWTXq/pUVnpO2LzwJXC46vAQ9/oxSvJGOdTcyM1ZZeS6PrJGVN3zzmKZgJNW2lfEsi05L86+Tmqt/T99MRqNkaAZtFiAIJwg43CvH8rq9KSCXPWWSzbm176aSRNQya0Cvz4t5UXTIMXt1ttDO36zg9mobTCmJ14uZg0qck+07b+Wmn0ODa5ZmgSgIV0grmwxbrddX9k424ev3aQnzpmSh/3VC4ax29r8W1VIRYZi1b03dFIO0ettOTlZJr5cNM7SkfE9pGt0wDcXrnKbNj2tNEeI2B3l+fTWfaFm2zoun+/0rlozlS4QywSn61cz/q5ljb4tWceIbxWIpkwN/377nuOZtjlY0/dCYBIBUcfW/NO7o7KFarzfe9guqrMRzZP+1n8mbDN986+zM6dxlm0BpUhDqHFZIL1rO4zlcvplJEhDXKdiUSHQ6RyVwdTTIY7/vg/+dIt0A7B8Alyqro0JP4TiZSq7DMWGkf+vafOMHb7rmcSnYg6VGWfe8dMcFmfq/G1+wMqFhOwncSc3d3DM8khbqmbDKlt+cC6dlfdzip2IEHb82oyE7Z5tW82IGVb0itbR3tt0KQa9Av1fs1WVvMbg25WZivIHfVGWmNht8mz1+a5OtsE4NHJc7QLQjrKZoqb1gFnVqfclcUacpdL/Wk/3aS0JMkC//eNtEZfhV6UaDLsWEEgW97NYktdkuszuOZ1Ihx7b0TforvNbxcYPI+d4rvQyfExr9veJJmD0G+gzrsQ4seA92qt/459/NPAg1rr/6bwml8AfsE+PAWsA2vf7mN9A9o0o3WA0To4G62DseI6HNJaz7yeDxNC/In9zL+MrWmtv+/1fN930t5omcNV4EDh8X5gsfgCrfWvAr/qHgshntJa3//tObw3ro3WwdhoHYyN1sHYjV6Hm9nZ/1XtBvLY3hB7EjghhDgihCgBHwQ+9B0+ppGNbGQje9PZGypz0FqnQoi/C/wpZpT117TWL3yHD2tkIxvZyN509oYKDgBa6z8G/viv8JZf/Ytf8qaw0ToYG62DsdE6GButwzdpb6iG9MhGNrKRjeyNYW+0nsPIRjaykY3sDWCj4DCykY1sZCN7jd20wUEI8X1CiDNCiFeFEL/0nT6eb6UJIX5NCLEihPha4blJIcTHhRBn7f8nCn/7ZbsuZ4QQ7/3OHPWNNyHEASHEp4UQLwkhXhBC/D37/JtqLYQQsRDiCSHEV+06/DP7/JtqHcBQ7ggh/kwI8WH7+E23Bt8quymDQ4GD6X3AbcBPCiFu+84e1bfUfh24fr76l4BPaq1PAJ+0j7Hr8EHgdvuef2vX67vBUuAfaa1vBd4C/KI93zfbWvSBd2qt7wZOA98nhHgLb751APh7wEuFx2/GNfiW2E0ZHChwMGmtB4DjYPquNK3154CN657+YeA37L9/A/iRwvO/rbXua60vAK9i1uumN631Na31M/bfbYxTmOdNthbamCNLiux/mjfZOggh9gPvB/5d4ek31Rp8K+1mDQ5fj4Np/jt0LN8p26O1vgbGaQKz9vk3xdoIIQ4D9wCP8yZcC1tOeRZYAT6utX4zrsO/Bv47GOKVfLOtwbfMbtbgIL7Oc6OZXGPf9WsjhKgDvwf8fa319p/30q/z3HfFWmitM631aQzFzINCiDv+nJd/162DEOIHgBWt9dN/2bd8nedu6jX4VtvNGhz+Qg6mN4EtCyH2Atj/r9jnv6vXRggRYQLD/661/n379JtyLQC01i3gM5g6+ptpHR4BfkgIcRFTVn6nEOI/8OZag2+p3azBYcTBZM73b9l//y3gDwvPf1AIURZCHAFOAE98B47vhpsQQgD/X+AlrfW/KvzpTbUWQogZIUTT/rsCvAt4mTfROmitf1lrvV9rfRhz/39Ka/03eROtwbfa3nD0GX8Ze7NxMAkh/g/gHcC0EOIq8E+BXwF+Rwjxc8Bl4McAtNYvCCF+ByOQlAK/qLX+btE1fAT4aeB5W28H+L/w5luLvcBv2GkbCfyO1vrDQogv8+Zah69nb7Zr4VtmI/qMkY1sZCMb2WvsZi0rjWxkIxvZyL6FNgoOIxvZyEY2stfYKDiMbGQjG9nIXmOj4DCykY1sZCN7jY2Cw8hGNrKRjew1NgoOIxvZyEY2stfYKDiMbGQjG9nIXmOj4DCy7xoTQjwghHjO6h3UrNbBn8c5NLKRjewb2AgEN7LvKhNC/E9ADFSAq1rr//t3+JBGNrKb0kbBYWTfVWa5tp4EesBbRxQJIxvZN2ejstLIvttsEqgDDUwGMbKRjeybsFHmMLLvKhNCfAhD4XwE2Ku1/rvf4UMa2chuSrspWVlHNrKvZ0KInwFSrfVvWcbSLwkh3qm1/tR3+thGNrKbzUaZw8hGNrKRjew1Nuo5jGxkIxvZyF5jo+AwspGNbGQje42NgsPIRjaykY3sNTYKDiMb2chGNrLX2Cg4jGxkIxvZyF5jo+AwspGNbGQje42NgsPIRjaykY3sNfb/BwFa/4hxgtB5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "multiscale['scale1'].ds['Cell_Colony.jpg'].plot.imshow()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "be8b2cad", + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Object of type java.lang.String is not JSON serializable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Input \u001b[0;32mIn [18]\u001b[0m, in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m multiscale\u001b[38;5;241m.\u001b[39mmap_over_subtree_inplace(attrs_to_str)\n\u001b[1;32m 10\u001b[0m store \u001b[38;5;241m=\u001b[39m zarr\u001b[38;5;241m.\u001b[39mstorage\u001b[38;5;241m.\u001b[39mDirectoryStore(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCell_Colony.zarr\u001b[39m\u001b[38;5;124m'\u001b[39m, dimension_separator\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 11\u001b[0m \u001b[43mmultiscale\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_zarr\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/src/spatial-image-multiscale/spatial_image_multiscale.py:131\u001b[0m, in \u001b[0;36mMultiscaleSpatialImage.to_zarr\u001b[0;34m(self, store, mode, encoding, **kwargs)\u001b[0m\n\u001b[1;32m 128\u001b[0m ngff_metadata \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmultiscales\u001b[39m\u001b[38;5;124m\"\u001b[39m: multiscales}\n\u001b[1;32m 129\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mds\u001b[38;5;241m.\u001b[39mattrs \u001b[38;5;241m=\u001b[39m ngff_metadata\n\u001b[0;32m--> 131\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_zarr\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/datatree/datatree.py:721\u001b[0m, in \u001b[0;36mDataTree.to_zarr\u001b[0;34m(self, store, mode, encoding, consolidated, **kwargs)\u001b[0m\n\u001b[1;32m 696\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 697\u001b[0m \u001b[38;5;124;03mWrite datatree contents to a Zarr store.\u001b[39;00m\n\u001b[1;32m 698\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 717\u001b[0m \u001b[38;5;124;03m Additional keyword arguments to be passed to ``xarray.Dataset.to_zarr``\u001b[39;00m\n\u001b[1;32m 718\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 719\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mio\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _datatree_to_zarr\n\u001b[0;32m--> 721\u001b[0m \u001b[43m_datatree_to_zarr\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 722\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 723\u001b[0m \u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 724\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 725\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 726\u001b[0m \u001b[43m \u001b[49m\u001b[43mconsolidated\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconsolidated\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 727\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 728\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/datatree/io.py:222\u001b[0m, in \u001b[0;36m_datatree_to_zarr\u001b[0;34m(dt, store, mode, encoding, consolidated, **kwargs)\u001b[0m\n\u001b[1;32m 220\u001b[0m _create_empty_zarr_group(store, group_path, mode)\n\u001b[1;32m 221\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 222\u001b[0m \u001b[43mds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_zarr\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 223\u001b[0m \u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 224\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 225\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 226\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_maybe_extract_group_kwargs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpathstr\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 227\u001b[0m \u001b[43m \u001b[49m\u001b[43mconsolidated\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 228\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 229\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 230\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mw\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m 231\u001b[0m mode \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124ma\u001b[39m\u001b[38;5;124m\"\u001b[39m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/xarray/core/dataset.py:2036\u001b[0m, in \u001b[0;36mDataset.to_zarr\u001b[0;34m(self, store, chunk_store, mode, synchronizer, group, encoding, compute, consolidated, append_dim, region, safe_chunks, storage_options)\u001b[0m\n\u001b[1;32m 2033\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m encoding \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 2034\u001b[0m encoding \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m-> 2036\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mto_zarr\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2037\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2038\u001b[0m \u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2039\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunk_store\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunk_store\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2040\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2041\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2042\u001b[0m \u001b[43m \u001b[49m\u001b[43msynchronizer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msynchronizer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2043\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2044\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2045\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcompute\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2046\u001b[0m \u001b[43m \u001b[49m\u001b[43mconsolidated\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconsolidated\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2047\u001b[0m \u001b[43m \u001b[49m\u001b[43mappend_dim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mappend_dim\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2048\u001b[0m \u001b[43m \u001b[49m\u001b[43mregion\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mregion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2049\u001b[0m \u001b[43m \u001b[49m\u001b[43msafe_chunks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msafe_chunks\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2050\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/xarray/backends/api.py:1431\u001b[0m, in \u001b[0;36mto_zarr\u001b[0;34m(dataset, store, chunk_store, mode, synchronizer, group, encoding, compute, consolidated, append_dim, region, safe_chunks, storage_options)\u001b[0m\n\u001b[1;32m 1429\u001b[0m writer \u001b[38;5;241m=\u001b[39m ArrayWriter()\n\u001b[1;32m 1430\u001b[0m \u001b[38;5;66;03m# TODO: figure out how to properly handle unlimited_dims\u001b[39;00m\n\u001b[0;32m-> 1431\u001b[0m \u001b[43mdump_to_store\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdataset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mzstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1432\u001b[0m writes \u001b[38;5;241m=\u001b[39m writer\u001b[38;5;241m.\u001b[39msync(compute\u001b[38;5;241m=\u001b[39mcompute)\n\u001b[1;32m 1434\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m compute:\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/xarray/backends/api.py:1119\u001b[0m, in \u001b[0;36mdump_to_store\u001b[0;34m(dataset, store, writer, encoder, encoding, unlimited_dims)\u001b[0m\n\u001b[1;32m 1116\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m encoder:\n\u001b[1;32m 1117\u001b[0m variables, attrs \u001b[38;5;241m=\u001b[39m encoder(variables, attrs)\n\u001b[0;32m-> 1119\u001b[0m \u001b[43mstore\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstore\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvariables\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcheck_encoding\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43munlimited_dims\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43munlimited_dims\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/xarray/backends/zarr.py:531\u001b[0m, in \u001b[0;36mZarrStore.store\u001b[0;34m(self, variables, attributes, check_encoding_set, writer, unlimited_dims)\u001b[0m\n\u001b[1;32m 522\u001b[0m _validate_existing_dims(\n\u001b[1;32m 523\u001b[0m var_name,\n\u001b[1;32m 524\u001b[0m new_var,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 527\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_append_dim,\n\u001b[1;32m 528\u001b[0m )\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mr+\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m--> 531\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset_attributes\u001b[49m\u001b[43m(\u001b[49m\u001b[43mattributes\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 532\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_dimensions(variables_encoded, unlimited_dims\u001b[38;5;241m=\u001b[39munlimited_dims)\n\u001b[1;32m 534\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mset_variables(\n\u001b[1;32m 535\u001b[0m variables_encoded, check_encoding_set, writer, unlimited_dims\u001b[38;5;241m=\u001b[39munlimited_dims\n\u001b[1;32m 536\u001b[0m )\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/xarray/backends/zarr.py:456\u001b[0m, in \u001b[0;36mZarrStore.set_attributes\u001b[0;34m(self, attributes)\u001b[0m\n\u001b[1;32m 455\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mset_attributes\u001b[39m(\u001b[38;5;28mself\u001b[39m, attributes):\n\u001b[0;32m--> 456\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mzarr_group\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mput\u001b[49m\u001b[43m(\u001b[49m\u001b[43mattributes\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/zarr/attrs.py:109\u001b[0m, in \u001b[0;36mAttributes.put\u001b[0;34m(self, d)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mput\u001b[39m(\u001b[38;5;28mself\u001b[39m, d):\n\u001b[1;32m 107\u001b[0m \u001b[38;5;124;03m\"\"\"Overwrite all attributes with the key/value pairs in the provided dictionary\u001b[39;00m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;124;03m `d` in a single operation.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 109\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_write_op\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_put_nosync\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43md\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/zarr/attrs.py:73\u001b[0m, in \u001b[0;36mAttributes._write_op\u001b[0;34m(self, f, *args, **kwargs)\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;66;03m# synchronization\u001b[39;00m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msynchronizer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 73\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msynchronizer[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkey]:\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/zarr/attrs.py:112\u001b[0m, in \u001b[0;36mAttributes._put_nosync\u001b[0;34m(self, d)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_put_nosync\u001b[39m(\u001b[38;5;28mself\u001b[39m, d):\n\u001b[0;32m--> 112\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstore[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkey] \u001b[38;5;241m=\u001b[39m \u001b[43mjson_dumps\u001b[49m\u001b[43m(\u001b[49m\u001b[43md\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcache:\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cached_asdict \u001b[38;5;241m=\u001b[39m d\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/site-packages/zarr/util.py:38\u001b[0m, in \u001b[0;36mjson_dumps\u001b[0;34m(o)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mjson_dumps\u001b[39m(o: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mbytes\u001b[39m:\n\u001b[1;32m 37\u001b[0m \u001b[38;5;124;03m\"\"\"Write JSON in a consistent, human-readable way.\"\"\"\u001b[39;00m\n\u001b[0;32m---> 38\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mjson\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdumps\u001b[49m\u001b[43m(\u001b[49m\u001b[43mo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m4\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mensure_ascii\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 39\u001b[0m \u001b[43m \u001b[49m\u001b[43mseparators\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m,\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m: \u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mencode(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mascii\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/__init__.py:234\u001b[0m, in \u001b[0;36mdumps\u001b[0;34m(obj, skipkeys, ensure_ascii, check_circular, allow_nan, cls, indent, separators, default, sort_keys, **kw)\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 233\u001b[0m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;241m=\u001b[39m JSONEncoder\n\u001b[0;32m--> 234\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 235\u001b[0m \u001b[43m \u001b[49m\u001b[43mskipkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipkeys\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mensure_ascii\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mensure_ascii\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 236\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_circular\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcheck_circular\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_nan\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 237\u001b[0m \u001b[43m \u001b[49m\u001b[43mseparators\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mseparators\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdefault\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdefault\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort_keys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 238\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:201\u001b[0m, in \u001b[0;36mJSONEncoder.encode\u001b[0;34m(self, o)\u001b[0m\n\u001b[1;32m 199\u001b[0m chunks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miterencode(o, _one_shot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(chunks, (\u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n\u001b[0;32m--> 201\u001b[0m chunks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mchunks\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(chunks)\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:431\u001b[0m, in \u001b[0;36m_make_iterencode.._iterencode\u001b[0;34m(o, _current_indent_level)\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m _iterencode_list(o, _current_indent_level)\n\u001b[1;32m 430\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(o, \u001b[38;5;28mdict\u001b[39m):\n\u001b[0;32m--> 431\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m _iterencode_dict(o, _current_indent_level)\n\u001b[1;32m 432\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 433\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m markers \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:405\u001b[0m, in \u001b[0;36m_make_iterencode.._iterencode_dict\u001b[0;34m(dct, _current_indent_level)\u001b[0m\n\u001b[1;32m 403\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 404\u001b[0m chunks \u001b[38;5;241m=\u001b[39m _iterencode(value, _current_indent_level)\n\u001b[0;32m--> 405\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m chunks\n\u001b[1;32m 406\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m newline_indent \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 407\u001b[0m _current_indent_level \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:325\u001b[0m, in \u001b[0;36m_make_iterencode.._iterencode_list\u001b[0;34m(lst, _current_indent_level)\u001b[0m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 324\u001b[0m chunks \u001b[38;5;241m=\u001b[39m _iterencode(value, _current_indent_level)\n\u001b[0;32m--> 325\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m chunks\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m newline_indent \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 327\u001b[0m _current_indent_level \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:405\u001b[0m, in \u001b[0;36m_make_iterencode.._iterencode_dict\u001b[0;34m(dct, _current_indent_level)\u001b[0m\n\u001b[1;32m 403\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 404\u001b[0m chunks \u001b[38;5;241m=\u001b[39m _iterencode(value, _current_indent_level)\n\u001b[0;32m--> 405\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m chunks\n\u001b[1;32m 406\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m newline_indent \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 407\u001b[0m _current_indent_level \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:438\u001b[0m, in \u001b[0;36m_make_iterencode.._iterencode\u001b[0;34m(o, _current_indent_level)\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCircular reference detected\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 437\u001b[0m markers[markerid] \u001b[38;5;241m=\u001b[39m o\n\u001b[0;32m--> 438\u001b[0m o \u001b[38;5;241m=\u001b[39m \u001b[43m_default\u001b[49m\u001b[43m(\u001b[49m\u001b[43mo\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 439\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m _iterencode(o, _current_indent_level)\n\u001b[1;32m 440\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m markers \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m~/bin/mambaforge/envs/spatial-image/lib/python3.9/json/encoder.py:179\u001b[0m, in \u001b[0;36mJSONEncoder.default\u001b[0;34m(self, o)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdefault\u001b[39m(\u001b[38;5;28mself\u001b[39m, o):\n\u001b[1;32m 161\u001b[0m \u001b[38;5;124;03m\"\"\"Implement this method in a subclass such that it returns\u001b[39;00m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;124;03m a serializable object for ``o``, or calls the base implementation\u001b[39;00m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;124;03m (to raise a ``TypeError``).\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 177\u001b[0m \n\u001b[1;32m 178\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 179\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mObject of type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mo\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 180\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mis not JSON serializable\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mTypeError\u001b[0m: Object of type java.lang.String is not JSON serializable" + ] + } + ], + "source": [ + "# Generate an OME-NGFF\n", + "\n", + "# Make Java objects serializable\n", + "def attrs_to_str(ds):\n", + " for attr in ds.attrs:\n", + " ds.attrs[attr] = str(ds.attrs[attr])\n", + " return ds\n", + "multiscale.map_over_subtree_inplace(attrs_to_str)\n", + "\n", + "store = zarr.storage.DirectoryStore('Cell_Colony.zarr', dimension_separator='/')\n", + "multiscale.to_zarr(store)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5bfbf6b", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}