-
Notifications
You must be signed in to change notification settings - Fork 10
/
cosmo.yaml
58 lines (49 loc) · 1.26 KB
/
cosmo.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
output_dir: results/cosmo-000
mlperf:
org: LBNL
division: closed
status: onprem
platform: SUBMISSION_PLATFORM_PLACEHOLDER
data:
name: cosmo
data_dir: /global/cscratch1/sd/sfarrell/cosmoflow-benchmark/data/cosmoUniverse_2019_05_4parE_tf
n_train: 262144
n_valid: 65536
sample_shape: [128, 128, 128, 4]
batch_size: 4
n_epochs: 128
shard: True
apply_log: True
prefetch: 4
model:
name: cosmoflow
input_shape: [128, 128, 128, 4]
target_size: 4
conv_size: 32
fc1_size: 128
fc2_size: 64
hidden_activation: LeakyReLU
pooling_type: MaxPool3D
dropout: 0.5
optimizer:
name: SGD
momentum: 0.9
lr_schedule:
# Standard linear LR scaling configuration, tested up to batch size 1024
base_lr: 0.001
scaling: linear
base_batch_size: 64
# Alternate sqrt LR scaling which has worked well for batch size 512-1024.
#base_lr: 0.0025
#scaling: sqrt
#base_batch_size: 32
n_warmup_epochs: 4
# You may want to adjust these decay epochs depending on your batch size.
# E.g. if training batch size 64 you may want to decay at 16 and 32 epochs.
decay_schedule:
32: 0.25
64: 0.125
train:
loss: mse
metrics: ['mae']
target_mae: 0.124