-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbond_execution.py
71 lines (54 loc) · 3.49 KB
/
bond_execution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import logging
from meta_extraction import *
from add_info import *
from id_search import *
from bib_retrieval import *
from cit_retrieval import *
from graph_analysis import *
def BoND(cand_jsons_path, comm_csv_path, outcomes_path, final_path):
logging.basicConfig(filename='data_collection.log', level=logging.ERROR,
format='%(asctime)s %(levelname)s %(name)s %(message)s')
logger = logging.getLogger(__name__)
cv_dict = extracting_metadata(cand_jsons_path, comm_csv_path) # extracting metadata from the CV jsons
outcome_dict = adding_name_outcome(cv_dict, outcomes_path) # adding clean name and outcome
ids_dict = adding_ids(logger, outcome_dict) # adding AuIds and DOIs to the existing metadata
bib_dict = adding_bib(logger, ids_dict) # adding extra publications found in MAG
cit_dict = adding_cit(logger, bib_dict) # adding citations for each publications
cov_dict = adding_cov(cit_dict) # adding coverage section for each candidate
complete_dict = adding_citmetrics(cov_dict) # creating and analyzing networks, and calculating citation metrics
with open(final_path, 'w', encoding='utf-8', newline='') as metrics_csv:
writer = csv.writer(metrics_csv)
writer.writerow(("coverage", "term", "role", "field", "id",
"cand", "co-au",
"books", "articles", "other_pubbs",
"cand_comm", "comm_cand",
"BC", "CC",
"cand_other", "other_cand",
"nd_m1", "nd_m2", "nd_m3",
"outcome"))
for asn_year, terms in complete_dict["cand"].items():
for term, roles in terms.items():
for role, fields in roles.items():
for field, candidates in fields.items():
for candidate, info in candidates.items():
if "1" in info["citmetrics"]["cand_paths"].keys():
cand_comm = len(info["citmetrics"]["cand_paths"]["1"])
else:
cand_comm = 0
if "1" in info["citmetrics"]["comm_paths"].keys():
comm_cand = len(info["citmetrics"]["comm_paths"]["1"])
else:
comm_cand = 0
writer.writerow((info["coverage"]["cov_sect"], term, role, field, candidate,
info["citmetrics"]["cand_nodes"],
info["citmetrics"]["co-au"]["number"],
info["coverage"]["books"], info["coverage"]["articles"],
info["coverage"]["other_pubbs"],
cand_comm, comm_cand,
info["citmetrics"]["bc"]["number"], info["citmetrics"]["cc"]["number"],
info["citmetrics"]["other"]["cand_other"],
info["citmetrics"]["other"]["other_cand"],
info["ind_anvur"][0], info["ind_anvur"][1], info["ind_anvur"][2],
info["ind_anvur"][3]))
cv_jsons_folder = os.path.join(os.getcwd(), "cv_jsons")
BoND(cv_jsons_folder, "commissions.csv", "indicatoriCalcolati-ASN16-18.tsv", "complete_metrics.csv")