Skip to content

Latest commit

 

History

History
569 lines (403 loc) · 19.9 KB

README.md

File metadata and controls

569 lines (403 loc) · 19.9 KB

CircleCI Slack

What is MariaDB????

MariaDB is a fast, reliable, scalable, and easy to use open-source relational database system. MariaDB Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

https://mariadb.com/

TL;DR;

$ docker run --name mariadb -e ALLOW_EMPTY_PASSWORD=yes bitnami/mariadb:latest

Docker Compose

$ curl -sSL https://raw.githubusercontent.com/bitnami/bitnami-docker-mariadb/master/docker-compose.yml > docker-compose.yml
$ docker-compose up -d

Why use Bitnami Images?

  • Bitnami closely tracks upstream source changes and promptly publishes new versions of this image using our automated systems.
  • With Bitnami images the latest bug fixes and features are available as soon as possible.
  • Bitnami containers, virtual machines and cloud images use the same components and configuration approach - making it easy to switch between formats based on your project needs.
  • Bitnami images are built on CircleCI and automatically pushed to the Docker Hub.
  • All our images are based on minideb a minimalist Debian based container image which gives you a small base container image and the familiarity of a leading linux distribution.

Get this image

The recommended way to get the Bitnami MariaDB Docker Image is to pull the prebuilt image from the Docker Hub Registry.

$ docker pull bitnami/mariadb:latest

To use a specific version, you can pull a versioned tag. You can view the list of available versions in the Docker Hub Registry.

$ docker pull bitnami/mariadb:[TAG]

If you wish, you can also build the image yourself.

$ docker build -t bitnami/mariadb:latest https://github.com/bitnami/bitnami-docker-mariadb.git

Persisting your database

If you remove the container all your data and configurations will be lost, and the next time you run the image the database will be reinitialized. To avoid this loss of data, you should mount a volume that will persist even after the container is removed.

For persistence you should mount a directory at the /bitnami path. If the mounted directory is empty, it will be initialized on the first run.

$ docker run \
    -e ALLOW_EMPTY_PASSWORD=yes \
    -v /path/to/mariadb-persistence:/bitnami \
    bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes
    ports:
      - '3306:3306'
    volumes:
      - /path/to/mariadb-persistence:/bitnami

Connecting to other containers

Using Docker container networking, a MariaDB server running inside a container can easily be accessed by your application containers.

Containers attached to the same network can communicate with each other using the container name as the hostname.

Using the Command Line

In this example, we will create a MariaDB client instance that will connect to the server instance that is running on the same docker network as the client.

Step 1: Create a network

$ docker network create app-tier --driver bridge

Step 2: Launch the MariaDB server instance

Use the --network app-tier argument to the docker run command to attach the MariaDB container to the app-tier network.

$ docker run -d --name mariadb-server \
    -e ALLOW_EMPTY_PASSWORD=yes \
    --network app-tier \
    bitnami/mariadb:latest

Step 3: Launch your MariaDB client instance

Finally we create a new container instance to launch the MariaDB client and connect to the server created in the previous step:

$ docker run -it --rm \
    --network app-tier \
    bitnami/mariadb:latest mysql -h mariadb-server -u root

Using Docker Compose

When not specified, Docker Compose automatically sets up a new network and attaches all deployed services to that network. However, we will explicitly define a new bridge network named app-tier. In this example we assume that you want to connect to the MariaDB server from your own custom application image which is identified in the following snippet by the service name myapp.

version: '2'

networks:
  app-tier:
    driver: bridge

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes
    networks:
      - app-tier
  myapp:
    image: 'YOUR_APPLICATION_IMAGE'
    networks:
      - app-tier

IMPORTANT:

  1. Please update the YOUR_APPLICATION_IMAGE placeholder in the above snippet with your application image
  2. In your application container, use the hostname mariadb to connect to the MariaDB server

Launch the containers using:

$ docker-compose up -d

Configuration

Passing extra command-line flags to mysqld startup

Passing extra command-line flags to the mysqld service command is possible through the following env var:

  • MARIADB_EXTRA_FLAGS: Flags to be appended to the startup command. No defaults
$ docker run --name mariadb -e ALLOW_EMPTY_PASSWORD=yes -e MARIADB_EXTRA_FLAGS='--max-connect-errors=1000 --max_connections=155' bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306:3306'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes
      - MARIADB_EXTRA_FLAGS=--max-connect-errors=1000 --max_connections=155

Setting the root password on first run

The root user and password can easily be setup with the Bitnami MariaDB Docker image using the following environment variables:

  • MARIADB_ROOT_USER: The database admin user. Defaults to root.
  • MARIADB_ROOT_PASSWORD: The database admin user password. No defaults.

Passing the MARIADB_ROOT_PASSWORD environment variable when running the image for the first time will set the password of the MARIADB_ROOT_USER user to the value of MARIADB_ROOT_PASSWORD.

$ docker run --name mariadb -e MARIADB_ROOT_PASSWORD=password123 bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306:3306'
    environment:
      - MARIADB_ROOT_PASSWORD=password123

Warning The MARIADB_ROOT_USER user is always created with remote access. It's suggested that the MARIADB_ROOT_PASSWORD env variable is always specified to set a password for the MARIADB_ROOT_USER user. In case you want to allow the MARIADB_ROOT_USER user to access the database without a password set the environment variable ALLOW_EMPTY_PASSWORD=yes. This is recommended only for development.

Allowing empty passwords

By default the MariaDB image expects all the available passwords to be set. In order to allow empty passwords, it is necessary to set the ALLOW_EMPTY_PASSWORD=yes env variable. This env variable is only recommended for testing or development purposes. We strongly recommend specifying the MARIADB_ROOT_PASSWORD for any other scenario.

$ docker run --name mariadb -e ALLOW_EMPTY_PASSWORD=yes bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306:3306'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes

Creating a database on first run

By passing the MARIADB_DATABASE environment variable when running the image for the first time, a database will be created. This is useful if your application requires that a database already exists, saving you from having to manually create the database using the MySQL client.

$ docker run --name mariadb \
    -e ALLOW_EMPTY_PASSWORD=yes \
    -e MARIADB_DATABASE=my_database \
    bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306:3306'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes
      - MARIADB_DATABASE=my_database

Creating a database user on first run

You can create a restricted database user that only has permissions for the database created with the MARIADB_DATABASE environment variable. To do this, provide the MARIADB_USER environment variable and to set a password for the database user provide the MARIADB_PASSWORD variable.

$ docker run --name mariadb \
  -e ALLOW_EMPTY_PASSWORD=yes \
  -e MARIADB_USER=my_user \
  -e MARIADB_PASSWORD=my_password \
  -e MARIADB_DATABASE=my_database \
  bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306:3306'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes
      - MARIADB_USER=my_user
      - MARIADB_PASSWORD=my_password
      - MARIADB_DATABASE=my_database

Note! The root user will be created with remote access and without a password if ALLOW_EMPTY_PASSWORD is enabled. Please provide the MARIADB_ROOT_PASSWORD env variable instead if you want to set a password for the root user.

Setting up a replication cluster

A zero downtime MariaDB master-slave replication cluster can easily be setup with the Bitnami MariaDB Docker image using the following environment variables:

  • MARIADB_REPLICATION_MODE: The replication mode. Possible values master/slave. No defaults.
  • MARIADB_REPLICATION_USER: The replication user created on the master on first run. No defaults.
  • MARIADB_REPLICATION_PASSWORD: The replication users password. No defaults.
  • MARIADB_MASTER_HOST: Hostname/IP of replication master (slave parameter). No defaults.
  • MARIADB_MASTER_PORT_NUMBER: Server port of the replication master (slave parameter). Defaults to 3306.
  • MARIADB_MASTER_ROOT_USER: User on replication master with access to MARIADB_DATABASE (slave parameter). Defaults to root
  • MARIADB_MASTER_ROOT_PASSWORD: Password of user on replication master with access to MARIADB_DATABASE (slave parameter). No defaults.

In a replication cluster you can have one master and zero or more slaves. When replication is enabled the master node is in read-write mode, while the slaves are in read-only mode. For best performance its advisable to limit the reads to the slaves.

Step 1: Create the replication master

The first step is to start the MariaDB master.

$ docker run --name mariadb-master \
  -e MARIADB_ROOT_PASSWORD=master_root_password \
  -e MARIADB_REPLICATION_MODE=master \
  -e MARIADB_REPLICATION_USER=my_repl_user \
  -e MARIADB_REPLICATION_PASSWORD=my_repl_password \
  -e MARIADB_USER=my_user \
  -e MARIADB_PASSWORD=my_password \
  -e MARIADB_DATABASE=my_database \
  bitnami/mariadb:latest

In the above command the container is configured as the master using the MARIADB_REPLICATION_MODE parameter. A replication user is specified using the MARIADB_REPLICATION_USER and MARIADB_REPLICATION_PASSWORD parameters.

Step 2: Create the replication slave

Next we start a MariaDB slave container.

$ docker run --name mariadb-slave --link mariadb-master:master \
  -e MARIADB_REPLICATION_MODE=slave \
  -e MARIADB_REPLICATION_USER=my_repl_user \
  -e MARIADB_REPLICATION_PASSWORD=my_repl_password \
  -e MARIADB_MASTER_HOST=master \
  -e MARIADB_MASTER_ROOT_PASSWORD=master_root_password \
  bitnami/mariadb:latest

In the above command the container is configured as a slave using the MARIADB_REPLICATION_MODE parameter. The MARIADB_MASTER_HOST, MARIADB_MASTER_ROOT_USER and MARIADB_MASTER_ROOT_PASSWORD parameters are used by the slave to connect to the master. It also takes a dump of the existing data in the master server. The replication user credentials are specified using the MARIADB_REPLICATION_USER and MARIADB_REPLICATION_PASSWORD parameters and should be the same as the one specified on the master.

You now have a two node MariaDB master/slave replication cluster up and running. You can scale the cluster by adding/removing slaves without incurring any downtime.

With Docker Compose the master/slave replication can be setup using:

version: '2'

services:
  mariadb-master:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306'
    volumes:
      - /path/to/mariadb-persistence:/bitnami
    environment:
      - MARIADB_REPLICATION_MODE=master
      - MARIADB_REPLICATION_USER=repl_user
      - MARIADB_REPLICATION_PASSWORD=repl_password
      - MARIADB_ROOT_PASSWORD=master_root_password
      - MARIADB_USER=my_user
      - MARIADB_PASSWORD=my_password
      - MARIADB_DATABASE=my_database
  mariadb-slave:
    image: 'bitnami/mariadb:latest'
    ports:
      - '3306'
    depends_on:
      - mariadb-master
    environment:
      - MARIADB_REPLICATION_MODE=slave
      - MARIADB_REPLICATION_USER=repl_user
      - MARIADB_REPLICATION_PASSWORD=repl_password
      - MARIADB_MASTER_HOST=mariadb-master
      - MARIADB_MASTER_PORT_NUMBER=3306
      - MARIADB_MASTER_ROOT_PASSWORD=master_root_password

Scale the number of slaves using:

$ docker-compose scale mariadb-master=1 mariadb-slave=3

The above command scales up the number of slaves to 3. You can scale down in the same manner.

Note: You should not scale up/down the number of master nodes. Always have only one master node running.

Configuration file

The image looks for user-defined configurations in /bitnami/mariadb/conf/my_custom.cnf. Create a file named my_custom.cnf and mount it at /bitnami/mariadb/conf/my_custom.cnf.

For example, in order to override the max_allowed_packet directive:

Step 1: Write your my_custom.cnf file with the following content.

[mysqld]
max_allowed_packet=32M

Step 2: Run the mariaDB image with the designed volume attached.

$ docker run --name mariadb -v /path/to/my_custom.cnf:/bitnami/mariadb/conf/my_custom.cnf:ro bitnami/mariadb:latest

or using Docker Compose:

version: '2'

services:
  mariadb:
    image: 'bitnami/mariadb:latest'
    environment:
      - ALLOW_EMPTY_PASSWORD=yes
    ports:
      - '3306:3306'
    volumes:
      - /path/to/my_custom.cnf:/bitnami/mariadb/conf/my_custom.cnf:ro

After that, your changes will be taken into account in the server's behaviour.

As mentioned in Persisting your database if you mount a volume at /bitnami, you could copy my_custom.cnf at /path/to/mariadb-persistence/mariadb/conf/my_custom.cnf or even edit the /path/to/mariadb-persistence/mariadb/conf/my.cnf file.

Refer to the MySQL server option and variable reference guide for the complete list of configuration options.

Logging

The Bitnami MariaDB Docker image sends the container logs to the stdout. To view the logs:

$ docker logs mariadb

or using Docker Compose:

$ docker-compose logs mariadb

You can configure the containers logging driver using the --log-driver option if you wish to consume the container logs differently. In the default configuration docker uses the json-file driver.

Maintenance

Upgrade this image

Bitnami provides up-to-date versions of MariaDB, including security patches, soon after they are made upstream. We recommend that you follow these steps to upgrade your container.

Step 1: Get the updated image

$ docker pull bitnami/mariadb:latest

or if you're using Docker Compose, update the value of the image property to bitnami/mariadb:latest.

Step 2: Stop and backup the currently running container

Stop the currently running container using the command

$ docker stop mariadb

or using Docker Compose:

$ docker-compose stop mariadb

Next, take a snapshot of the persistent volume /path/to/mariadb-persistence using:

$ rsync -a /path/to/mariadb-persistence /path/to/mariadb-persistence.bkp.$(date +%Y%m%d-%H.%M.%S)

You can use this snapshot to restore the database state should the upgrade fail.

Step 3: Remove the currently running container

$ docker rm -v mariadb

or using Docker Compose:

$ docker-compose rm -v mariadb

Step 4: Run the new image

Re-create your container from the new image.

$ docker run --name mariadb bitnami/mariadb:latest

or using Docker Compose:

$ docker-compose start mariadb

Useful Links

Notable Changes

10.1.28-r2

  • The mariadb container has been migrated to a non-root container approach. Previously the container run as root user and the mariadb daemon was started as mysql user. From now own, both the container and the mariadb daemon run as user 1001. As a consequence, the configuration files are writable by the user running the mariadb process.

10.1.24-r2

  • VOLUME instruction has been removed from the Dockerfile.

10.1.21-r2

  • MARIADB_MASTER_USER has been renamed to MARIADB_MASTER_ROOT_USER
  • MARIADB_MASTER_PASSWORD has been renamed to MARIADB_MASTER_ROOT_PASSWORD
  • MARIADB_ROOT_USER has been added to the available env variables. It can be used to specify the admin user.
  • ALLOW_EMPTY_PASSWORD has been added to the available env variables. It can be used to allow blank passwords for MariaDB.
  • By default the MariaDB image requires a root password to start. You can specify it using the MARIADB_ROOT_PASSWORD env variable or disable this requirement by setting the ALLOW_EMPTY_PASSWORD env variable to yes (testing or development scenarios).

10.1.13-r0

  • All volumes have been merged at /bitnami/mariadb. Now you only need to mount a single volume at /bitnami/mariadb for persistence.
  • The logs are always sent to the stdout and are no longer collected in the volume.

Contributing

We'd love for you to contribute to this container. You can request new features by creating an issue, or submit a pull request with your contribution.

Issues

If you encountered a problem running this container, you can file an issue. For us to provide better support, be sure to include the following information in your issue:

  • Host OS and version
  • Docker version (docker version)
  • Output of docker info
  • Version of this container (echo $BITNAMI_IMAGE_VERSION inside the container)
  • The command you used to run the container, and any relevant output you saw (masking any sensitive information)

Community

Most real time communication happens in the #containers channel at bitnami-oss.slack.com; you can sign up at slack.oss.bitnami.com.

Discussions are archived at bitnami-oss.slackarchive.io.

License

Copyright (c) 2015-2018 Bitnami

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.