forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integer_expr.h
905 lines (802 loc) · 34.9 KB
/
integer_expr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_INTEGER_EXPR_H_
#define OR_TOOLS_SAT_INTEGER_EXPR_H_
#include <cstdint>
#include <functional>
#include <vector>
#include "ortools/base/int_type.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/base/mathutil.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/precedences.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/util/rev.h"
namespace operations_research {
namespace sat {
// A really basic implementation of an upper-bounded sum of integer variables.
// The complexity is in O(num_variables) at each propagation.
//
// Note that we assume that there can be NO integer overflow. This must be
// checked at model validation time before this is even created.
//
// TODO(user): If one has many such constraint, it will be more efficient to
// propagate all of them at once rather than doing it one at the time.
//
// TODO(user): Explore tree structure to get a log(n) complexity.
//
// TODO(user): When the variables are Boolean, use directly the pseudo-Boolean
// constraint implementation. But we do need support for enforcement literals
// there.
class IntegerSumLE : public PropagatorInterface {
public:
// If refied_literal is kNoLiteralIndex then this is a normal constraint,
// otherwise we enforce the implication refied_literal => constraint is true.
// Note that we don't do the reverse implication here, it is usually done by
// another IntegerSumLE constraint on the negated variables.
IntegerSumLE(const std::vector<Literal>& enforcement_literals,
const std::vector<IntegerVariable>& vars,
const std::vector<IntegerValue>& coeffs,
IntegerValue upper_bound, Model* model);
// We propagate:
// - If the sum of the individual lower-bound is > upper_bound, we fail.
// - For all i, upper-bound of i
// <= upper_bound - Sum {individual lower-bound excluding i).
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
// Same as Propagate() but only consider current root level bounds. This is
// mainly useful for the LP propagator since it can find relevant optimal
// really late in the search tree.
bool PropagateAtLevelZero();
// This is a pretty usage specific function. Returns the implied lower bound
// on target_var if the given integer literal is false (resp. true). If the
// variables do not appear both in the linear inequality, this returns two
// kMinIntegerValue.
std::pair<IntegerValue, IntegerValue> ConditionalLb(
IntegerLiteral integer_literal, IntegerVariable target_var) const;
private:
// Fills integer_reason_ with all the current lower_bounds. The real
// explanation may require removing one of them, but as an optimization, we
// always keep all the IntegerLiteral in integer_reason_, and swap them as
// needed just before pushing something.
void FillIntegerReason();
const std::vector<Literal> enforcement_literals_;
const IntegerValue upper_bound_;
Trail* trail_;
IntegerTrail* integer_trail_;
TimeLimit* time_limit_;
RevIntegerValueRepository* rev_integer_value_repository_;
// Reversible sum of the lower bound of the fixed variables.
bool is_registered_ = false;
IntegerValue rev_lb_fixed_vars_;
// Reversible number of fixed variables.
int rev_num_fixed_vars_;
// Those vectors are shuffled during search to ensure that the variables
// (resp. coefficients) contained in the range [0, rev_num_fixed_vars_) of
// vars_ (resp. coeffs_) are fixed (resp. belong to fixed variables).
std::vector<IntegerVariable> vars_;
std::vector<IntegerValue> coeffs_;
std::vector<IntegerValue> max_variations_;
std::vector<Literal> literal_reason_;
// Parallel vectors.
std::vector<IntegerLiteral> integer_reason_;
std::vector<IntegerValue> reason_coeffs_;
DISALLOW_COPY_AND_ASSIGN(IntegerSumLE);
};
// This assumes target = SUM_i coeffs[i] * vars[i], and detects that the target
// must be of the form (a*X + b).
//
// This propagator is quite specific and runs only at level zero. For now, this
// is mainly used for the objective variable. As we fix terms with high
// objective coefficient, it is possible the only terms left have a common
// divisor. This close app2-2.mps in less than a second instead of running
// forever to prove the optimal (in single thread).
class LevelZeroEquality : PropagatorInterface {
public:
LevelZeroEquality(IntegerVariable target,
const std::vector<IntegerVariable>& vars,
const std::vector<IntegerValue>& coeffs, Model* model);
bool Propagate() final;
private:
const IntegerVariable target_;
const std::vector<IntegerVariable> vars_;
const std::vector<IntegerValue> coeffs_;
IntegerValue gcd_ = IntegerValue(1);
Trail* trail_;
IntegerTrail* integer_trail_;
};
// A min (resp max) constraint of the form min == MIN(vars) can be decomposed
// into two inequalities:
// 1/ min <= MIN(vars), which is the same as for all v in vars, "min <= v".
// This can be taken care of by the LowerOrEqual(min, v) constraint.
// 2/ min >= MIN(vars).
//
// And in turn, 2/ can be decomposed in:
// a) lb(min) >= lb(MIN(vars)) = MIN(lb(var));
// b) ub(min) >= ub(MIN(vars)) and we can't propagate anything here unless
// there is just one possible variable 'v' that can be the min:
// for all u != v, lb(u) > ub(min);
// In this case, ub(min) >= ub(v).
//
// This constraint take care of a) and b). That is:
// - If the min of the lower bound of the vars increase, then the lower bound of
// the min_var will be >= to it.
// - If there is only one candidate for the min, then if the ub(min) decrease,
// the ub of the only candidate will be <= to it.
//
// Complexity: This is a basic implementation in O(num_vars) on each call to
// Propagate(), which will happen each time one or more variables in vars_
// changed.
//
// TODO(user): Implement a more efficient algorithm when the need arise.
class MinPropagator : public PropagatorInterface {
public:
MinPropagator(const std::vector<IntegerVariable>& vars,
IntegerVariable min_var, IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
const std::vector<IntegerVariable> vars_;
const IntegerVariable min_var_;
IntegerTrail* integer_trail_;
std::vector<IntegerLiteral> integer_reason_;
DISALLOW_COPY_AND_ASSIGN(MinPropagator);
};
// Same as MinPropagator except this works on min = MIN(exprs) where exprs are
// linear expressions. It uses IntegerSumLE to propagate bounds on the exprs.
// Assumes Canonical expressions (all positive coefficients).
class LinMinPropagator : public PropagatorInterface {
public:
LinMinPropagator(const std::vector<LinearExpression>& exprs,
IntegerVariable min_var, Model* model);
LinMinPropagator(const LinMinPropagator&) = delete;
LinMinPropagator& operator=(const LinMinPropagator&) = delete;
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
// Lighter version of IntegerSumLE. This uses the current value of
// integer_reason_ in addition to the reason for propagating the linear
// constraint. The coeffs are assumed to be positive here.
bool PropagateLinearUpperBound(const std::vector<IntegerVariable>& vars,
const std::vector<IntegerValue>& coeffs,
IntegerValue upper_bound);
const std::vector<LinearExpression> exprs_;
const IntegerVariable min_var_;
std::vector<IntegerValue> expr_lbs_;
Model* model_;
IntegerTrail* integer_trail_;
std::vector<IntegerLiteral> integer_reason_for_unique_candidate_;
int rev_unique_candidate_ = 0;
};
// Propagates a * b = p.
//
// The bounds [min, max] of a and b will be propagated perfectly, but not
// the bounds on p as this require more complex arithmetics.
class ProductPropagator : public PropagatorInterface {
public:
ProductPropagator(AffineExpression a, AffineExpression b, AffineExpression p,
IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
// Maybe replace a_, b_ or c_ by their negation to simplify the cases.
bool CanonicalizeCases();
// Special case when all are >= 0.
// We use faster code and better reasons than the generic code.
bool PropagateWhenAllNonNegative();
// Internal helper, see code for more details.
bool PropagateMaxOnPositiveProduct(AffineExpression a, AffineExpression b,
IntegerValue min_p, IntegerValue max_p);
// Note that we might negate any two terms in CanonicalizeCases() during
// each propagation. This is fine.
AffineExpression a_;
AffineExpression b_;
AffineExpression p_;
IntegerTrail* integer_trail_;
DISALLOW_COPY_AND_ASSIGN(ProductPropagator);
};
// Propagates num / denom = div. Basic version, we don't extract any special
// cases, and we only propagates the bounds. It expects denom to be > 0.
//
// TODO(user): Deal with overflow.
class DivisionPropagator : public PropagatorInterface {
public:
DivisionPropagator(AffineExpression num, AffineExpression denom,
AffineExpression div, IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
// Propagates the fact that the signs of each domain, if fixed, are
// compatible.
bool PropagateSigns();
// If both num and div >= 0, we can propagate their upper bounds.
bool PropagateUpperBounds(AffineExpression num, AffineExpression denom,
AffineExpression div);
// When the sign of all 3 expressions are fixed, we can do morel propagation.
//
// By using negated expressions, we can make sure the domains of num, denom,
// and div are positive.
bool PropagatePositiveDomains(AffineExpression num, AffineExpression denom,
AffineExpression div);
const AffineExpression num_;
const AffineExpression denom_;
const AffineExpression div_;
const AffineExpression negated_num_;
const AffineExpression negated_div_;
IntegerTrail* integer_trail_;
DISALLOW_COPY_AND_ASSIGN(DivisionPropagator);
};
// Propagates var_a / cst_b = var_c. Basic version, we don't extract any special
// cases, and we only propagates the bounds. cst_b must be > 0.
class FixedDivisionPropagator : public PropagatorInterface {
public:
FixedDivisionPropagator(AffineExpression a, IntegerValue b,
AffineExpression c, IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
const AffineExpression a_;
const IntegerValue b_;
const AffineExpression c_;
IntegerTrail* integer_trail_;
DISALLOW_COPY_AND_ASSIGN(FixedDivisionPropagator);
};
// Propagates target == expr % mod. Basic version, we don't extract any special
// cases, and we only propagates the bounds. mod must be > 0.
class FixedModuloPropagator : public PropagatorInterface {
public:
FixedModuloPropagator(AffineExpression expr, IntegerValue mod,
AffineExpression target, IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
bool PropagateSignsAndTargetRange();
bool PropagateBoundsWhenExprIsPositive(AffineExpression expr,
AffineExpression target);
bool PropagateOuterBounds();
const AffineExpression expr_;
const IntegerValue mod_;
const AffineExpression target_;
const AffineExpression negated_expr_;
const AffineExpression negated_target_;
IntegerTrail* integer_trail_;
DISALLOW_COPY_AND_ASSIGN(FixedModuloPropagator);
};
// Propagates x * x = s.
// TODO(user): Only works for x nonnegative.
class SquarePropagator : public PropagatorInterface {
public:
SquarePropagator(AffineExpression x, AffineExpression s,
IntegerTrail* integer_trail);
bool Propagate() final;
void RegisterWith(GenericLiteralWatcher* watcher);
private:
const AffineExpression x_;
const AffineExpression s_;
IntegerTrail* integer_trail_;
DISALLOW_COPY_AND_ASSIGN(SquarePropagator);
};
// =============================================================================
// Model based functions.
// =============================================================================
// Weighted sum <= constant.
template <typename VectorInt>
inline std::function<void(Model*)> WeightedSumLowerOrEqual(
const std::vector<IntegerVariable>& vars, const VectorInt& coefficients,
int64_t upper_bound) {
// Special cases.
CHECK_GE(vars.size(), 1);
if (vars.size() == 1) {
const int64_t c = coefficients[0];
CHECK_NE(c, 0);
if (c > 0) {
return LowerOrEqual(
vars[0],
FloorRatio(IntegerValue(upper_bound), IntegerValue(c)).value());
} else {
return GreaterOrEqual(
vars[0],
CeilRatio(IntegerValue(-upper_bound), IntegerValue(-c)).value());
}
}
if (vars.size() == 2 && (coefficients[0] == 1 || coefficients[0] == -1) &&
(coefficients[1] == 1 || coefficients[1] == -1)) {
return Sum2LowerOrEqual(
coefficients[0] == 1 ? vars[0] : NegationOf(vars[0]),
coefficients[1] == 1 ? vars[1] : NegationOf(vars[1]), upper_bound);
}
if (vars.size() == 3 && (coefficients[0] == 1 || coefficients[0] == -1) &&
(coefficients[1] == 1 || coefficients[1] == -1) &&
(coefficients[2] == 1 || coefficients[2] == -1)) {
return Sum3LowerOrEqual(
coefficients[0] == 1 ? vars[0] : NegationOf(vars[0]),
coefficients[1] == 1 ? vars[1] : NegationOf(vars[1]),
coefficients[2] == 1 ? vars[2] : NegationOf(vars[2]), upper_bound);
}
return [=](Model* model) {
// We split large constraints into a square root number of parts.
// This is to avoid a bad complexity while propagating them since our
// algorithm is not in O(num_changes).
//
// TODO(user): Alternatively, we could use a O(num_changes) propagation (a
// bit tricky to implement), or a decomposition into a tree with more than
// one level. Both requires experimentations.
//
// TODO(user): If the initial constraint was an equalilty we will create
// the "intermediate" variable twice where we could have use the same for
// both direction. Improve?
const int num_vars = vars.size();
if (num_vars > 100) {
std::vector<IntegerVariable> bucket_sum_vars;
std::vector<IntegerVariable> local_vars;
std::vector<IntegerValue> local_coeffs;
int i = 0;
const int num_buckets = static_cast<int>(std::round(std::sqrt(num_vars)));
for (int b = 0; b < num_buckets; ++b) {
local_vars.clear();
local_coeffs.clear();
int64_t bucket_lb = 0;
int64_t bucket_ub = 0;
const int limit = num_vars * (b + 1);
for (; i * num_buckets < limit; ++i) {
local_vars.push_back(vars[i]);
local_coeffs.push_back(IntegerValue(coefficients[i]));
const int64_t term1 =
model->Get(LowerBound(vars[i])) * coefficients[i];
const int64_t term2 =
model->Get(UpperBound(vars[i])) * coefficients[i];
bucket_lb += std::min(term1, term2);
bucket_ub += std::max(term1, term2);
}
const IntegerVariable bucket_sum =
model->Add(NewIntegerVariable(bucket_lb, bucket_ub));
bucket_sum_vars.push_back(bucket_sum);
local_vars.push_back(bucket_sum);
local_coeffs.push_back(IntegerValue(-1));
IntegerSumLE* constraint = new IntegerSumLE(
{}, local_vars, local_coeffs, IntegerValue(0), model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
}
// Create the root-level sum.
local_vars.clear();
local_coeffs.clear();
for (const IntegerVariable var : bucket_sum_vars) {
local_vars.push_back(var);
local_coeffs.push_back(IntegerValue(1));
}
IntegerSumLE* constraint = new IntegerSumLE(
{}, local_vars, local_coeffs, IntegerValue(upper_bound), model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
return;
}
IntegerSumLE* constraint = new IntegerSumLE(
{}, vars,
std::vector<IntegerValue>(coefficients.begin(), coefficients.end()),
IntegerValue(upper_bound), model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
// Weighted sum >= constant.
template <typename VectorInt>
inline std::function<void(Model*)> WeightedSumGreaterOrEqual(
const std::vector<IntegerVariable>& vars, const VectorInt& coefficients,
int64_t lower_bound) {
// We just negate everything and use an <= constraints.
std::vector<int64_t> negated_coeffs(coefficients.begin(), coefficients.end());
for (int64_t& ref : negated_coeffs) ref = -ref;
return WeightedSumLowerOrEqual(vars, negated_coeffs, -lower_bound);
}
// Weighted sum == constant.
template <typename VectorInt>
inline std::function<void(Model*)> FixedWeightedSum(
const std::vector<IntegerVariable>& vars, const VectorInt& coefficients,
int64_t value) {
return [=](Model* model) {
model->Add(WeightedSumGreaterOrEqual(vars, coefficients, value));
model->Add(WeightedSumLowerOrEqual(vars, coefficients, value));
};
}
// enforcement_literals => sum <= upper_bound
template <typename VectorInt>
inline std::function<void(Model*)> ConditionalWeightedSumLowerOrEqual(
const std::vector<Literal>& enforcement_literals,
const std::vector<IntegerVariable>& vars, const VectorInt& coefficients,
int64_t upper_bound) {
// Special cases.
CHECK_GE(vars.size(), 1);
if (vars.size() == 1) {
CHECK_NE(coefficients[0], 0);
if (coefficients[0] > 0) {
return Implication(
enforcement_literals,
IntegerLiteral::LowerOrEqual(
vars[0], FloorRatio(IntegerValue(upper_bound),
IntegerValue(coefficients[0]))));
} else {
return Implication(
enforcement_literals,
IntegerLiteral::GreaterOrEqual(
vars[0], CeilRatio(IntegerValue(-upper_bound),
IntegerValue(-coefficients[0]))));
}
}
if (vars.size() == 2 && (coefficients[0] == 1 || coefficients[0] == -1) &&
(coefficients[1] == 1 || coefficients[1] == -1)) {
return ConditionalSum2LowerOrEqual(
coefficients[0] == 1 ? vars[0] : NegationOf(vars[0]),
coefficients[1] == 1 ? vars[1] : NegationOf(vars[1]), upper_bound,
enforcement_literals);
}
if (vars.size() == 3 && (coefficients[0] == 1 || coefficients[0] == -1) &&
(coefficients[1] == 1 || coefficients[1] == -1) &&
(coefficients[2] == 1 || coefficients[2] == -1)) {
return ConditionalSum3LowerOrEqual(
coefficients[0] == 1 ? vars[0] : NegationOf(vars[0]),
coefficients[1] == 1 ? vars[1] : NegationOf(vars[1]),
coefficients[2] == 1 ? vars[2] : NegationOf(vars[2]), upper_bound,
enforcement_literals);
}
return [=](Model* model) {
// If value == min(expression), then we can avoid creating the sum.
IntegerValue expression_min(0);
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
for (int i = 0; i < vars.size(); ++i) {
expression_min +=
coefficients[i] * (coefficients[i] >= 0
? integer_trail->LowerBound(vars[i])
: integer_trail->UpperBound(vars[i]));
}
if (expression_min == upper_bound) {
// Tricky: as we create integer literal, we might propagate stuff and
// the bounds might change, so if the expression_min increase with the
// bound we use, then the literal must be false.
IntegerValue non_cached_min;
for (int i = 0; i < vars.size(); ++i) {
if (coefficients[i] > 0) {
const IntegerValue lb = integer_trail->LowerBound(vars[i]);
non_cached_min += coefficients[i] * lb;
model->Add(Implication(enforcement_literals,
IntegerLiteral::LowerOrEqual(vars[i], lb)));
} else if (coefficients[i] < 0) {
const IntegerValue ub = integer_trail->UpperBound(vars[i]);
non_cached_min += coefficients[i] * ub;
model->Add(Implication(enforcement_literals,
IntegerLiteral::GreaterOrEqual(vars[i], ub)));
}
}
if (non_cached_min > expression_min) {
std::vector<Literal> clause;
for (const Literal l : enforcement_literals) {
clause.push_back(l.Negated());
}
model->Add(ClauseConstraint(clause));
}
} else {
IntegerSumLE* constraint = new IntegerSumLE(
enforcement_literals, vars,
std::vector<IntegerValue>(coefficients.begin(), coefficients.end()),
IntegerValue(upper_bound), model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
}
};
}
// enforcement_literals => sum >= lower_bound
template <typename VectorInt>
inline std::function<void(Model*)> ConditionalWeightedSumGreaterOrEqual(
const std::vector<Literal>& enforcement_literals,
const std::vector<IntegerVariable>& vars, const VectorInt& coefficients,
int64_t lower_bound) {
// We just negate everything and use an <= constraint.
std::vector<int64_t> negated_coeffs(coefficients.begin(), coefficients.end());
for (int64_t& ref : negated_coeffs) ref = -ref;
return ConditionalWeightedSumLowerOrEqual(enforcement_literals, vars,
negated_coeffs, -lower_bound);
}
// Weighted sum <= constant reified.
template <typename VectorInt>
inline std::function<void(Model*)> WeightedSumLowerOrEqualReif(
Literal is_le, const std::vector<IntegerVariable>& vars,
const VectorInt& coefficients, int64_t upper_bound) {
return [=](Model* model) {
model->Add(ConditionalWeightedSumLowerOrEqual({is_le}, vars, coefficients,
upper_bound));
model->Add(ConditionalWeightedSumGreaterOrEqual(
{is_le.Negated()}, vars, coefficients, upper_bound + 1));
};
}
// Weighted sum >= constant reified.
template <typename VectorInt>
inline std::function<void(Model*)> WeightedSumGreaterOrEqualReif(
Literal is_ge, const std::vector<IntegerVariable>& vars,
const VectorInt& coefficients, int64_t lower_bound) {
return [=](Model* model) {
model->Add(ConditionalWeightedSumGreaterOrEqual({is_ge}, vars, coefficients,
lower_bound));
model->Add(ConditionalWeightedSumLowerOrEqual(
{is_ge.Negated()}, vars, coefficients, lower_bound - 1));
};
}
// LinearConstraint version.
inline void LoadLinearConstraint(const LinearConstraint& cst, Model* model) {
if (cst.vars.empty()) {
if (cst.lb <= 0 && cst.ub >= 0) return;
model->GetOrCreate<SatSolver>()->NotifyThatModelIsUnsat();
return;
}
// TODO(user): Remove the conversion!
std::vector<int64_t> converted_coeffs;
for (const IntegerValue v : cst.coeffs) converted_coeffs.push_back(v.value());
if (cst.ub < kMaxIntegerValue) {
model->Add(
WeightedSumLowerOrEqual(cst.vars, converted_coeffs, cst.ub.value()));
}
if (cst.lb > kMinIntegerValue) {
model->Add(
WeightedSumGreaterOrEqual(cst.vars, converted_coeffs, cst.lb.value()));
}
}
inline void LoadConditionalLinearConstraint(
const absl::Span<const Literal> enforcement_literals,
const LinearConstraint& cst, Model* model) {
if (enforcement_literals.empty()) {
return LoadLinearConstraint(cst, model);
}
if (cst.vars.empty()) {
if (cst.lb <= 0 && cst.ub >= 0) return;
return model->Add(ClauseConstraint(enforcement_literals));
}
// TODO(user): Remove the conversion!
std::vector<Literal> converted_literals(enforcement_literals.begin(),
enforcement_literals.end());
std::vector<int64_t> converted_coeffs;
for (const IntegerValue v : cst.coeffs) converted_coeffs.push_back(v.value());
if (cst.ub < kMaxIntegerValue) {
model->Add(ConditionalWeightedSumLowerOrEqual(
converted_literals, cst.vars, converted_coeffs, cst.ub.value()));
}
if (cst.lb > kMinIntegerValue) {
model->Add(ConditionalWeightedSumGreaterOrEqual(
converted_literals, cst.vars, converted_coeffs, cst.lb.value()));
}
}
// Weighted sum == constant reified.
// TODO(user): Simplify if the constant is at the edge of the possible values.
template <typename VectorInt>
inline std::function<void(Model*)> FixedWeightedSumReif(
Literal is_eq, const std::vector<IntegerVariable>& vars,
const VectorInt& coefficients, int64_t value) {
return [=](Model* model) {
// We creates two extra Boolean variables in this case. The alternative is
// to code a custom propagator for the direction equality => reified.
const Literal is_le = Literal(model->Add(NewBooleanVariable()), true);
const Literal is_ge = Literal(model->Add(NewBooleanVariable()), true);
model->Add(ReifiedBoolAnd({is_le, is_ge}, is_eq));
model->Add(WeightedSumLowerOrEqualReif(is_le, vars, coefficients, value));
model->Add(WeightedSumGreaterOrEqualReif(is_ge, vars, coefficients, value));
};
}
// Weighted sum != constant.
// TODO(user): Simplify if the constant is at the edge of the possible values.
template <typename VectorInt>
inline std::function<void(Model*)> WeightedSumNotEqual(
const std::vector<IntegerVariable>& vars, const VectorInt& coefficients,
int64_t value) {
return [=](Model* model) {
// Exactly one of these alternative must be true.
const Literal is_lt = Literal(model->Add(NewBooleanVariable()), true);
const Literal is_gt = is_lt.Negated();
model->Add(ConditionalWeightedSumLowerOrEqual(is_lt, vars, coefficients,
value - 1));
model->Add(ConditionalWeightedSumGreaterOrEqual(is_gt, vars, coefficients,
value + 1));
};
}
// Model-based function to create an IntegerVariable that corresponds to the
// given weighted sum of other IntegerVariables.
//
// Note that this is templated so that it can seamlessly accept vector<int> or
// vector<int64_t>.
//
// TODO(user): invert the coefficients/vars arguments.
template <typename VectorInt>
inline std::function<IntegerVariable(Model*)> NewWeightedSum(
const VectorInt& coefficients, const std::vector<IntegerVariable>& vars) {
return [=](Model* model) {
std::vector<IntegerVariable> new_vars = vars;
// To avoid overflow in the FixedWeightedSum() constraint, we need to
// compute the basic bounds on the sum.
//
// TODO(user): deal with overflow here too!
int64_t sum_lb(0);
int64_t sum_ub(0);
for (int i = 0; i < new_vars.size(); ++i) {
if (coefficients[i] > 0) {
sum_lb += coefficients[i] * model->Get(LowerBound(new_vars[i]));
sum_ub += coefficients[i] * model->Get(UpperBound(new_vars[i]));
} else {
sum_lb += coefficients[i] * model->Get(UpperBound(new_vars[i]));
sum_ub += coefficients[i] * model->Get(LowerBound(new_vars[i]));
}
}
const IntegerVariable sum = model->Add(NewIntegerVariable(sum_lb, sum_ub));
new_vars.push_back(sum);
std::vector<int64_t> new_coeffs(coefficients.begin(), coefficients.end());
new_coeffs.push_back(-1);
model->Add(FixedWeightedSum(new_vars, new_coeffs, 0));
return sum;
};
}
// Expresses the fact that an existing integer variable is equal to the minimum
// of other integer variables.
inline std::function<void(Model*)> IsEqualToMinOf(
IntegerVariable min_var, const std::vector<IntegerVariable>& vars) {
return [=](Model* model) {
for (const IntegerVariable& var : vars) {
model->Add(LowerOrEqual(min_var, var));
}
MinPropagator* constraint =
new MinPropagator(vars, min_var, model->GetOrCreate<IntegerTrail>());
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
// Expresses the fact that an existing integer variable is equal to the minimum
// of linear expressions. Assumes Canonical expressions (all positive
// coefficients).
inline std::function<void(Model*)> IsEqualToMinOf(
const LinearExpression& min_expr,
const std::vector<LinearExpression>& exprs) {
return [=](Model* model) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
IntegerVariable min_var;
if (min_expr.vars.size() == 1 &&
std::abs(min_expr.coeffs[0].value()) == 1 && min_expr.offset == 0) {
if (min_expr.coeffs[0].value() == 1) {
min_var = min_expr.vars[0];
} else {
min_var = NegationOf(min_expr.vars[0]);
}
} else {
// Create a new variable if the expression is not just a single variable.
IntegerValue min_lb = LinExprLowerBound(min_expr, *integer_trail);
IntegerValue min_ub = LinExprUpperBound(min_expr, *integer_trail);
min_var = integer_trail->AddIntegerVariable(min_lb, min_ub);
// min_var = min_expr
std::vector<IntegerVariable> min_sum_vars = min_expr.vars;
std::vector<int64_t> min_sum_coeffs;
for (IntegerValue coeff : min_expr.coeffs) {
min_sum_coeffs.push_back(coeff.value());
}
min_sum_vars.push_back(min_var);
min_sum_coeffs.push_back(-1);
model->Add(FixedWeightedSum(min_sum_vars, min_sum_coeffs,
-min_expr.offset.value()));
}
for (const LinearExpression& expr : exprs) {
// min_var <= expr
std::vector<IntegerVariable> vars = expr.vars;
std::vector<int64_t> coeffs;
for (IntegerValue coeff : expr.coeffs) {
coeffs.push_back(coeff.value());
}
vars.push_back(min_var);
coeffs.push_back(-1);
model->Add(WeightedSumGreaterOrEqual(vars, coeffs, -expr.offset.value()));
}
LinMinPropagator* constraint = new LinMinPropagator(exprs, min_var, model);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
// Expresses the fact that an existing integer variable is equal to the maximum
// of other integer variables.
inline std::function<void(Model*)> IsEqualToMaxOf(
IntegerVariable max_var, const std::vector<IntegerVariable>& vars) {
return [=](Model* model) {
std::vector<IntegerVariable> negated_vars;
for (const IntegerVariable& var : vars) {
negated_vars.push_back(NegationOf(var));
model->Add(GreaterOrEqual(max_var, var));
}
MinPropagator* constraint = new MinPropagator(
negated_vars, NegationOf(max_var), model->GetOrCreate<IntegerTrail>());
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
// Expresses the fact that an existing integer variable is equal to one of
// the given values, each selected by a given literal.
std::function<void(Model*)> IsOneOf(IntegerVariable var,
const std::vector<Literal>& selectors,
const std::vector<IntegerValue>& values);
template <class T>
void RegisterAndTransferOwnership(Model* model, T* ct) {
ct->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(ct);
}
// Adds the constraint: a * b = p.
inline std::function<void(Model*)> ProductConstraint(AffineExpression a,
AffineExpression b,
AffineExpression p) {
return [=](Model* model) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
if (a == b) {
if (integer_trail->LowerBound(a) >= 0) {
RegisterAndTransferOwnership(model,
new SquarePropagator(a, p, integer_trail));
return;
}
if (integer_trail->UpperBound(a) <= 0) {
RegisterAndTransferOwnership(
model, new SquarePropagator(a.Negated(), p, integer_trail));
return;
}
}
RegisterAndTransferOwnership(model,
new ProductPropagator(a, b, p, integer_trail));
};
}
// Adds the constraint: num / denom = div. (denom > 0).
inline std::function<void(Model*)> DivisionConstraint(AffineExpression num,
AffineExpression denom,
AffineExpression div) {
return [=](Model* model) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
DivisionPropagator* constraint;
if (integer_trail->UpperBound(denom) < 0) {
constraint = new DivisionPropagator(num.Negated(), denom.Negated(), div,
integer_trail);
} else {
constraint = new DivisionPropagator(num, denom, div, integer_trail);
}
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
// Adds the constraint: a / b = c where b is a constant.
inline std::function<void(Model*)> FixedDivisionConstraint(AffineExpression a,
IntegerValue b,
AffineExpression c) {
return [=](Model* model) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
FixedDivisionPropagator* constraint =
b > 0 ? new FixedDivisionPropagator(a, b, c, integer_trail)
: new FixedDivisionPropagator(a.Negated(), -b, c, integer_trail);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
// Adds the constraint: a % b = c where b is a constant.
inline std::function<void(Model*)> FixedModuloConstraint(AffineExpression a,
IntegerValue b,
AffineExpression c) {
return [=](Model* model) {
IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
FixedModuloPropagator* constraint =
new FixedModuloPropagator(a, b, c, integer_trail);
constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
model->TakeOwnership(constraint);
};
}
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_INTEGER_EXPR_H_