forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frequency_assignment_problem.cc
896 lines (812 loc) · 35.6 KB
/
frequency_assignment_problem.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Frequency Assignment Problem
// The Radio Link Frequency Assignment Problem consists in assigning frequencies
// to a set of radio links defined between pairs of sites in order to avoid
// interferences. Each radio link is represented by a variable whose domain is
// the set of all frequencies that are available for this link.
// The essential constraint involving two variables of the problem F1 and F2,
// which represent two frequencies in the spectrum, is
// |F1 - F2| > k12, where k12 is a predefined constant value.
// The Frequency Assignment Problem is an NP-complete problem as proved by means
// of reduction from k-Colorability problem for undirected graphs.
// The solution of the problem can be based on various criteria:
// - Simple satisfaction
// - Minimizing the number of distinct frequencies used
// - Minimizing the maximum frequency used, i.e minimizing the total width of
// the spectrum
// - Minimizing a weighted sum of violated constraints if the problem is
// inconsistent
// More on the Frequency Assignment Problem and the data format of its instances
// can be found at: http://www.inra.fr/mia/T/schiex/Doc/CELAR.shtml#synt
//
// Implementation
// Two solvers are implemented: The HardFapSolver finds the solution to
// feasible instances of the problem with objective either the minimization of
// the largest frequency assigned or the minimization of the number of
// frequencies used to the solution.
// The SoftFapSolver is optimizes the unfeasible instances. Some of the
// constraints of these instances may actually be soft constraints which may be
// violated at some predefined constant cost. The SoftFapSolver aims to minimize
// the total cost of violated constraints, i.e. to minimize the sum of all the
// violation costs.
// If the latter solver is forced to solve a feasible instance, the main
// function redirects to the former, afterwards.
//
#include <algorithm>
#include <cstdint>
#include <map>
#include <utility>
#include <vector>
#include "absl/flags/parse.h"
#include "absl/flags/usage.h"
#include "examples/cpp/fap_model_printer.h"
#include "examples/cpp/fap_parser.h"
#include "examples/cpp/fap_utilities.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"
#include "ortools/constraint_solver/constraint_solver.h"
ABSL_FLAG(std::string, directory, "", "Specifies the directory of the data.");
ABSL_FLAG(std::string, value_evaluator, "",
"Specifies if a value evaluator will be used by the "
"decision builder.");
ABSL_FLAG(std::string, variable_evaluator, "",
"Specifies if a variable evaluator will be used by the "
"decision builder.");
ABSL_FLAG(int, time_limit_in_ms, 0, "Time limit in ms, <= 0 means no limit.");
ABSL_FLAG(int, choose_next_variable_strategy, 1,
"Selection strategy for variable: "
"1 = CHOOSE_FIRST_UNBOUND, "
"2 = CHOOSE_MIN_SIZE_LOWEST_MIN, "
"3 = CHOOSE_MIN_SIZE_HIGHEST_MAX, "
"4 = CHOOSE_RANDOM, ");
ABSL_FLAG(int, restart, -1, "Parameter for constant restart monitor.");
ABSL_FLAG(bool, find_components, false,
"If possible, split the problem into independent sub-problems.");
ABSL_FLAG(bool, luby, false,
"Use luby restart monitor instead of constant restart monitor.");
ABSL_FLAG(bool, log_search, true, "Create a search log.");
ABSL_FLAG(bool, soft, false, "Use soft solver instead of hard solver.");
ABSL_FLAG(bool, display_time, true,
"Print how much time the solving process took.");
ABSL_FLAG(bool, display_results, true,
"Print the results of the solving process.");
namespace operations_research {
// Decision on the relative order that the two variables of a constraint
// will have. It takes as parameters the components of the constraint.
class OrderingDecision : public Decision {
public:
OrderingDecision(IntVar* const variable1, IntVar* const variable2, int value,
std::string operation)
: variable1_(variable1),
variable2_(variable2),
value_(value),
operator_(std::move(operation)) {}
~OrderingDecision() override {}
// Apply will be called first when the decision is executed.
void Apply(Solver* const s) override {
// variable1 < variable2
MakeDecision(s, variable1_, variable2_);
}
// Refute will be called after a backtrack.
void Refute(Solver* const s) override {
// variable1 > variable2
MakeDecision(s, variable2_, variable1_);
}
private:
void MakeDecision(Solver* s, IntVar* variable1, IntVar* variable2) {
if (operator_ == ">") {
IntExpr* difference = (s->MakeDifference(variable2, variable1));
s->AddConstraint(s->MakeGreater(difference, value_));
} else if (operator_ == "=") {
IntExpr* difference = (s->MakeDifference(variable2, variable1));
s->AddConstraint(s->MakeEquality(difference, value_));
} else {
LOG(FATAL) << "No right operator specified.";
}
}
IntVar* const variable1_;
IntVar* const variable2_;
const int value_;
const std::string operator_;
DISALLOW_COPY_AND_ASSIGN(OrderingDecision);
};
// Decision on whether a soft constraint will be added to a model
// or if it will be violated.
class ConstraintDecision : public Decision {
public:
explicit ConstraintDecision(IntVar* const constraint_violation)
: constraint_violation_(constraint_violation) {}
~ConstraintDecision() override {}
// Apply will be called first when the decision is executed.
void Apply(Solver* const s) override {
// The constraint with which the builder is dealing, will be satisfied.
constraint_violation_->SetValue(0);
}
// Refute will be called after a backtrack.
void Refute(Solver* const s) override {
// The constraint with which the builder is dealing, will not be satisfied.
constraint_violation_->SetValue(1);
}
private:
IntVar* const constraint_violation_;
DISALLOW_COPY_AND_ASSIGN(ConstraintDecision);
};
// The ordering builder resolves the relative order of the two variables
// included in each of the constraints of the problem. In that way the
// solving becomes much more efficient since we are branching on the
// disjunction implied by the absolute value expression.
class OrderingBuilder : public DecisionBuilder {
public:
enum Order { LESS = -1, EQUAL = 0, GREATER = 1 };
OrderingBuilder(const std::map<int, FapVariable>& data_variables,
const std::vector<FapConstraint>& data_constraints,
const std::vector<IntVar*>& variables,
const std::vector<IntVar*>& violated_constraints,
const std::map<int, int>& index_from_key)
: data_variables_(data_variables),
data_constraints_(data_constraints),
variables_(variables),
violated_constraints_(violated_constraints),
index_from_key_(index_from_key),
size_(data_constraints.size()),
iter_(0),
checked_iter_(0) {
for (const auto& it : data_variables_) {
int first_element = (it.second.domain)[0];
minimum_value_available_.push_back(first_element);
variable_state_.push_back(EQUAL);
}
CHECK_EQ(minimum_value_available_.size(), variables_.size());
CHECK_EQ(variable_state_.size(), variables_.size());
}
~OrderingBuilder() override {}
Decision* Next(Solver* const s) override {
if (iter_ < size_) {
FapConstraint constraint = data_constraints_[iter_];
const int index1 = gtl::FindOrDie(index_from_key_, constraint.variable1);
const int index2 = gtl::FindOrDie(index_from_key_, constraint.variable2);
IntVar* variable1 = variables_[index1];
IntVar* variable2 = variables_[index2];
// checked_iter is equal to 0 means that whether the constraint is to be
// added or dropped hasn't been checked.
// If it is equal to 1, this has already been checked and the ordering
// of the constraint is to be done.
if (!checked_iter_ && !constraint.hard) {
// New Soft Constraint: Check if it will be added or dropped.
ConstraintDecision* constraint_decision =
new ConstraintDecision(violated_constraints_[iter_]);
s->SaveAndAdd(&checked_iter_, 1);
return s->RevAlloc(constraint_decision);
}
// The constraint is either hard or soft and checked already.
if (violated_constraints_[iter_]->Bound() &&
violated_constraints_[iter_]->Value() == 0) {
// If the constraint is added, do the ordering of its variables.
OrderingDecision* ordering_decision;
Order hint = Hint(constraint);
if (hint == LESS || hint == EQUAL) {
ordering_decision = new OrderingDecision(
variable1, variable2, constraint.value, constraint.operation);
} else {
ordering_decision = new OrderingDecision(
variable2, variable1, constraint.value, constraint.operation);
}
// Proceed to the next constraint.
s->SaveAndAdd(&iter_, 1);
// Assign checked_iter_ back to 0 to flag a new unchecked constraint.
s->SaveAndSetValue(&checked_iter_, 0);
return s->RevAlloc(ordering_decision);
} else {
// The constraint was dropped.
return nullptr;
}
} else {
// All the constraints were processed. No decision to take.
return nullptr;
}
}
private:
Order Variable1LessVariable2(const int variable1, const int variable2,
const int value) {
minimum_value_available_[variable2] =
std::max(minimum_value_available_[variable2],
minimum_value_available_[variable1] + value);
return LESS;
}
Order Variable1GreaterVariable2(const int variable1, const int variable2,
const int value) {
minimum_value_available_[variable1] =
std::max(minimum_value_available_[variable1],
minimum_value_available_[variable2] + value);
return GREATER;
}
// The Hint() function takes as parameter a constraint of the model and
// returns the most probable relative order that the two variables
// involved in the constraint should have.
// The function reaches such a decision, by taking into consideration if
// variable1 or variable2 or both have been denoted as less (state = -1)
// or greater (state = 1) than another variable in a previous constraint
// and tries to maintain the same state in the current constraint too.
// If both variables have the same state, the variable whose minimum value is
// the smallest is set to be lower than the other one.
// If none of the above are applicable variable1 is set to be lower than
// variable2. This ordering is more efficient if used with the
// Solver::ASSIGN_MIN_VALUE value selection strategy.
// It returns 1 if variable1 > variable2 or -1 if variable1 < variable2.
Order Hint(const FapConstraint& constraint) {
const int id1 = constraint.variable1;
const int id2 = constraint.variable2;
const int variable1 = gtl::FindOrDie(index_from_key_, id1);
const int variable2 = gtl::FindOrDie(index_from_key_, id2);
const int value = constraint.value;
CHECK_LT(variable1, variable_state_.size());
CHECK_LT(variable2, variable_state_.size());
CHECK_LT(variable1, minimum_value_available_.size());
CHECK_LT(variable2, minimum_value_available_.size());
if (variable_state_[variable1] > variable_state_[variable2]) {
variable_state_[variable1] = GREATER;
variable_state_[variable2] = LESS;
return Variable1GreaterVariable2(variable1, variable2, value);
} else if (variable_state_[variable1] < variable_state_[variable2]) {
variable_state_[variable1] = LESS;
variable_state_[variable2] = GREATER;
return Variable1LessVariable2(variable1, variable2, value);
} else {
if (variable_state_[variable1] == 0 && variable_state_[variable2] == 0) {
variable_state_[variable1] = LESS;
variable_state_[variable2] = GREATER;
return Variable1LessVariable2(variable1, variable2, value);
} else {
if (minimum_value_available_[variable1] >
minimum_value_available_[variable2]) {
return Variable1GreaterVariable2(variable1, variable2, value);
} else {
return Variable1LessVariable2(variable1, variable2, value);
}
}
}
}
// Passed as arguments from the function that creates the Decision Builder.
const std::map<int, FapVariable> data_variables_;
const std::vector<FapConstraint> data_constraints_;
const std::vector<IntVar*> variables_;
const std::vector<IntVar*> violated_constraints_;
const std::map<int, int> index_from_key_;
// Used by Next() for monitoring decisions.
const int size_;
int iter_;
int checked_iter_;
// Used by Hint() for indicating the most probable ordering.
std::vector<Order> variable_state_;
std::vector<int> minimum_value_available_;
DISALLOW_COPY_AND_ASSIGN(OrderingBuilder);
};
// A comparator for sorting the constraints depending on their impact.
bool ConstraintImpactComparator(FapConstraint constraint1,
FapConstraint constraint2) {
if (constraint1.impact == constraint2.impact) {
return (constraint1.value > constraint2.value);
}
return (constraint1.impact > constraint2.impact);
}
int64_t ValueEvaluator(
absl::flat_hash_map<int64_t, std::pair<int64_t, int64_t>>*
value_evaluator_map,
int64_t variable_index, int64_t value) {
CHECK(value_evaluator_map != nullptr);
// Evaluate the choice. Smaller ranking denotes a better choice.
int64_t ranking = -1;
for (const auto& it : *value_evaluator_map) {
if ((it.first != variable_index) && (it.second.first == value)) {
ranking = -2;
break;
}
}
// Update the history of assigned values and their rankings of each variable.
absl::flat_hash_map<int64_t, std::pair<int64_t, int64_t>>::iterator it;
int64_t new_value = value;
int64_t new_ranking = ranking;
if ((it = value_evaluator_map->find(variable_index)) !=
value_evaluator_map->end()) {
std::pair<int64_t, int64_t> existing_value_ranking = it->second;
// Replace only if the current choice for this variable has smaller
// ranking or same ranking but smaller value of the existing choice.
if (!(existing_value_ranking.second > ranking ||
(existing_value_ranking.second == ranking &&
existing_value_ranking.first > value))) {
new_value = existing_value_ranking.first;
new_ranking = existing_value_ranking.second;
}
}
std::pair<int64_t, int64_t> new_value_ranking =
std::make_pair(new_value, new_ranking);
gtl::InsertOrUpdate(value_evaluator_map, variable_index, new_value_ranking);
return new_ranking;
}
// The variables which participate in more constraints and have the
// smaller domain should be in higher priority for assignment.
int64_t VariableEvaluator(const std::vector<int>& key_from_index,
const std::map<int, FapVariable>& data_variables,
int64_t variable_index) {
FapVariable variable =
gtl::FindOrDie(data_variables, key_from_index[variable_index]);
int64_t result = -(variable.degree * 100 / variable.domain_size);
return result;
}
// Creates the variables of the solver from the parsed data.
void CreateModelVariables(const std::map<int, FapVariable>& data_variables,
Solver* solver, std::vector<IntVar*>* model_variables,
std::map<int, int>* index_from_key,
std::vector<int>* key_from_index) {
CHECK(solver != nullptr);
CHECK(model_variables != nullptr);
CHECK(index_from_key != nullptr);
CHECK(key_from_index != nullptr);
const int number_of_variables = static_cast<int>(data_variables.size());
model_variables->resize(number_of_variables);
key_from_index->resize(number_of_variables);
int index = 0;
for (const auto& it : data_variables) {
CHECK_LT(index, model_variables->size());
(*model_variables)[index] = solver->MakeIntVar(it.second.domain);
gtl::InsertOrUpdate(index_from_key, it.first, index);
(*key_from_index)[index] = it.first;
if ((it.second.initial_position != -1) && (it.second.hard)) {
CHECK_LT(it.second.mobility_cost, 0);
solver->AddConstraint(solver->MakeEquality((*model_variables)[index],
it.second.initial_position));
}
index++;
}
}
// Creates the constraints of the instance from the parsed data.
void CreateModelConstraints(const std::vector<FapConstraint>& data_constraints,
const std::vector<IntVar*>& variables,
const std::map<int, int>& index_from_key,
Solver* solver) {
CHECK(solver != nullptr);
for (const FapConstraint& ct : data_constraints) {
const int index1 = gtl::FindOrDie(index_from_key, ct.variable1);
const int index2 = gtl::FindOrDie(index_from_key, ct.variable2);
CHECK_LT(index1, variables.size());
CHECK_LT(index2, variables.size());
IntVar* var1 = variables[index1];
IntVar* var2 = variables[index2];
IntVar* absolute_difference =
solver->MakeAbs(solver->MakeDifference(var1, var2))->Var();
if (ct.operation == ">") {
solver->AddConstraint(solver->MakeGreater(absolute_difference, ct.value));
} else if (ct.operation == "=") {
solver->AddConstraint(
solver->MakeEquality(absolute_difference, ct.value));
} else {
LOG(FATAL) << "Invalid operator detected.";
return;
}
}
}
// According to the value of a command line flag, chooses the strategy which
// determines the selection of the variable to be assigned next.
void ChooseVariableStrategy(Solver::IntVarStrategy* variable_strategy) {
CHECK(variable_strategy != nullptr);
switch (absl::GetFlag(FLAGS_choose_next_variable_strategy)) {
case 1: {
*variable_strategy = Solver::CHOOSE_FIRST_UNBOUND;
LOG(INFO) << "Using Solver::CHOOSE_FIRST_UNBOUND "
"for variable selection strategy.";
break;
}
case 2: {
*variable_strategy = Solver::CHOOSE_MIN_SIZE_LOWEST_MIN;
LOG(INFO) << "Using Solver::CHOOSE_MIN_SIZE_LOWEST_MIN "
"for variable selection strategy.";
break;
}
case 3: {
*variable_strategy = Solver::CHOOSE_MIN_SIZE_HIGHEST_MAX;
LOG(INFO) << "Using Solver::CHOOSE_MIN_SIZE_HIGHEST_MAX "
"for variable selection strategy.";
break;
}
case 4: {
*variable_strategy = Solver::CHOOSE_RANDOM;
LOG(INFO) << "Using Solver::CHOOSE_RANDOM "
"for variable selection strategy.";
break;
}
default: {
LOG(FATAL) << "Should not be here";
return;
}
}
}
// According to the values of some command line flags, adds some monitors
// for the search of the Solver.
void CreateAdditionalMonitors(OptimizeVar* const objective, Solver* solver,
std::vector<SearchMonitor*>* monitors) {
CHECK(solver != nullptr);
CHECK(monitors != nullptr);
// Search Log
if (absl::GetFlag(FLAGS_log_search)) {
SearchMonitor* const log = solver->MakeSearchLog(100000, objective);
monitors->push_back(log);
}
// Time Limit
if (absl::GetFlag(FLAGS_time_limit_in_ms) != 0) {
LOG(INFO) << "Adding time limit of "
<< absl::GetFlag(FLAGS_time_limit_in_ms) << " ms.";
SearchLimit* const limit = solver->MakeTimeLimit(
absl::Milliseconds(absl::GetFlag(FLAGS_time_limit_in_ms)));
monitors->push_back(limit);
}
// Search Restart
SearchMonitor* const restart =
absl::GetFlag(FLAGS_restart) != -1
? (absl::GetFlag(FLAGS_luby)
? solver->MakeLubyRestart(absl::GetFlag(FLAGS_restart))
: solver->MakeConstantRestart(absl::GetFlag(FLAGS_restart)))
: nullptr;
if (restart) {
monitors->push_back(restart);
}
}
// The Hard Solver is dealing with finding the solution to feasible
// instances of the problem with objective either the minimization of
// the largest frequency assigned or the minimization of the number
// of frequencies used to the solution.
void HardFapSolver(const std::map<int, FapVariable>& data_variables,
const std::vector<FapConstraint>& data_constraints,
const std::string& data_objective,
const std::vector<int>& values) {
Solver solver("HardFapSolver");
std::vector<SearchMonitor*> monitors;
// Create Model Variables.
std::vector<IntVar*> variables;
std::map<int, int> index_from_key;
std::vector<int> key_from_index;
CreateModelVariables(data_variables, &solver, &variables, &index_from_key,
&key_from_index);
// Create Model Constraints.
CreateModelConstraints(data_constraints, variables, index_from_key, &solver);
// Order the constraints according to their impact in the instance.
std::vector<FapConstraint> ordered_constraints(data_constraints);
std::sort(ordered_constraints.begin(), ordered_constraints.end(),
ConstraintImpactComparator);
std::vector<IntVar*> violated_constraints;
solver.MakeIntVarArray(ordered_constraints.size(), 0, 0,
&violated_constraints);
// Objective:
// Either minimize the largest assigned frequency or
// minimize the number of different frequencies assigned.
IntVar* objective_var;
OptimizeVar* objective;
if (data_objective == "Minimize the largest assigned value.") {
LOG(INFO) << "Minimize the largest assigned value.";
// The objective_var is set to hold the maximum value assigned
// in the variables vector.
objective_var = solver.MakeMax(variables)->Var();
objective = solver.MakeMinimize(objective_var, 1);
} else if (data_objective == "Minimize the number of assigned values.") {
LOG(INFO) << "Minimize the number of assigned values.";
std::vector<IntVar*> cardinality;
solver.MakeIntVarArray(static_cast<int>(values.size()), 0,
static_cast<int>(variables.size()), &cardinality);
solver.AddConstraint(solver.MakeDistribute(variables, values, cardinality));
std::vector<IntVar*> value_not_assigned;
for (int val = 0; val < values.size(); ++val) {
value_not_assigned.push_back(
solver.MakeIsEqualCstVar(cardinality[val], 0));
}
CHECK(!value_not_assigned.empty());
// The objective_var is set to maximize the number of values
// that have not been assigned to a variable.
objective_var = solver.MakeSum(value_not_assigned)->Var();
objective = solver.MakeMaximize(objective_var, 1);
} else {
LOG(FATAL) << "No right objective specified.";
return;
}
monitors.push_back(objective);
// Ordering Builder
OrderingBuilder* ob = solver.RevAlloc(
new OrderingBuilder(data_variables, ordered_constraints, variables,
violated_constraints, index_from_key));
// Decision Builder Configuration
// Choose the next variable selection strategy.
Solver::IntVarStrategy variable_strategy;
ChooseVariableStrategy(&variable_strategy);
// Choose the value selection strategy.
DecisionBuilder* db;
absl::flat_hash_map<int64_t, std::pair<int64_t, int64_t>> history;
if (absl::GetFlag(FLAGS_value_evaluator) == "value_evaluator") {
LOG(INFO) << "Using ValueEvaluator for value selection strategy.";
Solver::IndexEvaluator2 index_evaluator2 = [&history](int64_t var,
int64_t value) {
return ValueEvaluator(&history, var, value);
};
LOG(INFO) << "Using ValueEvaluator for value selection strategy.";
db = solver.MakePhase(variables, variable_strategy, index_evaluator2);
} else {
LOG(INFO) << "Using Solver::ASSIGN_MIN_VALUE for value selection strategy.";
db = solver.MakePhase(variables, variable_strategy,
Solver::ASSIGN_MIN_VALUE);
}
DecisionBuilder* final_db = solver.Compose(ob, db);
// Create Additional Monitors.
CreateAdditionalMonitors(objective, &solver, &monitors);
// Collector
SolutionCollector* const collector = solver.MakeLastSolutionCollector();
collector->Add(variables);
collector->Add(objective_var);
monitors.push_back(collector);
// Solve.
LOG(INFO) << "Solving...";
const int64_t time1 = solver.wall_time();
solver.Solve(final_db, monitors);
const int64_t time2 = solver.wall_time();
// Display Time.
if (absl::GetFlag(FLAGS_display_time)) {
PrintElapsedTime(time1, time2);
}
// Display Results.
if (absl::GetFlag(FLAGS_display_results)) {
PrintResultsHard(collector, variables, objective_var, data_variables,
data_constraints, index_from_key, key_from_index);
}
}
// Splits variables of the instance to hard and soft.
void SplitVariablesHardSoft(const std::map<int, FapVariable>& data_variables,
std::map<int, FapVariable>* hard_variables,
std::map<int, FapVariable>* soft_variables) {
for (const auto& it : data_variables) {
if (it.second.initial_position != -1) {
if (it.second.hard) {
CHECK_LT(it.second.mobility_cost, 0);
gtl::InsertOrUpdate(hard_variables, it.first, it.second);
} else {
CHECK_GE(it.second.mobility_cost, 0);
gtl::InsertOrUpdate(soft_variables, it.first, it.second);
}
}
}
}
// Splits constraints of the instance to hard and soft.
void SplitConstraintHardSoft(const std::vector<FapConstraint>& data_constraints,
std::vector<FapConstraint>* hard_constraints,
std::vector<FapConstraint>* soft_constraints) {
for (const FapConstraint& ct : data_constraints) {
if (ct.hard) {
CHECK_LT(ct.weight_cost, 0);
hard_constraints->push_back(ct);
} else {
CHECK_GE(ct.weight_cost, 0);
soft_constraints->push_back(ct);
}
}
}
// Penalize the modification of the initial position of soft variable of
// the instance.
void PenalizeVariablesViolation(
const std::map<int, FapVariable>& soft_variables,
const std::map<int, int>& index_from_key,
const std::vector<IntVar*>& variables, std::vector<IntVar*>* cost,
Solver* solver) {
for (const auto& it : soft_variables) {
const int index = gtl::FindOrDie(index_from_key, it.first);
CHECK_LT(index, variables.size());
IntVar* const displaced = solver->MakeIsDifferentCstVar(
variables[index], it.second.initial_position);
IntVar* const weight =
solver->MakeProd(displaced, it.second.mobility_cost)->Var();
cost->push_back(weight);
}
}
// Penalize the violation of soft constraints of the instance.
void PenalizeConstraintsViolation(
const std::vector<FapConstraint>& constraints,
const std::vector<FapConstraint>& soft_constraints,
const std::map<int, int>& index_from_key,
const std::vector<IntVar*>& variables, std::vector<IntVar*>* cost,
std::vector<IntVar*>* violated_constraints, Solver* solver) {
int violated_constraints_index = 0;
for (const FapConstraint& ct : constraints) {
CHECK_LT(violated_constraints_index, violated_constraints->size());
if (!ct.hard) {
// The violated_constraints_index will stop at the first soft constraint.
break;
}
IntVar* const hard_violation = solver->MakeIntVar(0, 0);
(*violated_constraints)[violated_constraints_index] = hard_violation;
violated_constraints_index++;
}
for (const FapConstraint& ct : soft_constraints) {
const int index1 = gtl::FindOrDie(index_from_key, ct.variable1);
const int index2 = gtl::FindOrDie(index_from_key, ct.variable2);
CHECK_LT(index1, variables.size());
CHECK_LT(index2, variables.size());
IntVar* const absolute_difference =
solver
->MakeAbs(
solver->MakeDifference(variables[index1], variables[index2]))
->Var();
IntVar* violation = nullptr;
if (ct.operation == ">") {
violation = solver->MakeIsLessCstVar(absolute_difference, ct.value);
} else if (ct.operation == "=") {
violation = solver->MakeIsDifferentCstVar(absolute_difference, ct.value);
} else {
LOG(FATAL) << "Invalid operator detected.";
}
IntVar* const weight = solver->MakeProd(violation, ct.weight_cost)->Var();
cost->push_back(weight);
CHECK_LT(violated_constraints_index, violated_constraints->size());
(*violated_constraints)[violated_constraints_index] = violation;
violated_constraints_index++;
}
CHECK_EQ(violated_constraints->size(), constraints.size());
}
// The Soft Solver is dealing with the optimization of unfeasible instances
// and aims to minimize the total cost of violated constraints. Returning value
// equal to 0 denotes that the instance is feasible.
int SoftFapSolver(const std::map<int, FapVariable>& data_variables,
const std::vector<FapConstraint>& data_constraints,
const std::string& data_objective,
const std::vector<int>& values) {
Solver solver("SoftFapSolver");
std::vector<SearchMonitor*> monitors;
// Split variables to hard and soft.
std::map<int, FapVariable> hard_variables;
std::map<int, FapVariable> soft_variables;
SplitVariablesHardSoft(data_variables, &hard_variables, &soft_variables);
// Order instance's constraints by their impact and then split them to
// hard and soft.
std::vector<FapConstraint> ordered_constraints(data_constraints);
std::sort(ordered_constraints.begin(), ordered_constraints.end(),
ConstraintImpactComparator);
std::vector<FapConstraint> hard_constraints;
std::vector<FapConstraint> soft_constraints;
SplitConstraintHardSoft(ordered_constraints, &hard_constraints,
&soft_constraints);
// Create Model Variables.
std::vector<IntVar*> variables;
std::map<int, int> index_from_key;
std::vector<int> key_from_index;
CreateModelVariables(data_variables, &solver, &variables, &index_from_key,
&key_from_index);
// Create Model Constraints.
CreateModelConstraints(hard_constraints, variables, index_from_key, &solver);
// Penalize variable and constraint violations.
std::vector<IntVar*> cost;
std::vector<IntVar*> violated_constraints(ordered_constraints.size(),
nullptr);
PenalizeVariablesViolation(soft_variables, index_from_key, variables, &cost,
&solver);
PenalizeConstraintsViolation(ordered_constraints, soft_constraints,
index_from_key, variables, &cost,
&violated_constraints, &solver);
// Objective
// Minimize the sum of violation penalties.
IntVar* objective_var = solver.MakeSum(cost)->Var();
OptimizeVar* objective = solver.MakeMinimize(objective_var, 1);
monitors.push_back(objective);
// Ordering Builder
OrderingBuilder* ob = solver.RevAlloc(
new OrderingBuilder(data_variables, ordered_constraints, variables,
violated_constraints, index_from_key));
// Decision Builder Configuration
// Choose the next variable selection strategy.
DecisionBuilder* db;
if (absl::GetFlag(FLAGS_variable_evaluator) == "variable_evaluator") {
LOG(INFO) << "Using VariableEvaluator for variable selection strategy and "
"Solver::ASSIGN_MIN_VALUE for value selection strategy.";
Solver::IndexEvaluator1 var_evaluator = [&key_from_index,
&data_variables](int64_t index) {
return VariableEvaluator(key_from_index, data_variables, index);
};
db = solver.MakePhase(variables, var_evaluator, Solver::ASSIGN_MIN_VALUE);
} else {
LOG(INFO) << "Using Solver::CHOOSE_FIRST_UNBOUND for variable selection "
"strategy and Solver::ASSIGN_MIN_VALUE for value selection "
"strategy.";
db = solver.MakePhase(variables, Solver::CHOOSE_FIRST_UNBOUND,
Solver::ASSIGN_MIN_VALUE);
}
DecisionBuilder* final_db = solver.Compose(ob, db);
// Create Additional Monitors.
CreateAdditionalMonitors(objective, &solver, &monitors);
// Collector
SolutionCollector* const collector = solver.MakeLastSolutionCollector();
collector->Add(variables);
collector->Add(objective_var);
monitors.push_back(collector);
// Solve.
LOG(INFO) << "Solving...";
const int64_t time1 = solver.wall_time();
solver.Solve(final_db, monitors);
const int64_t time2 = solver.wall_time();
int violation_sum =
collector->Value(collector->solution_count() - 1, objective_var);
// Display Time.
if (absl::GetFlag(FLAGS_display_time)) {
PrintElapsedTime(time1, time2);
}
// Display Results.
if (absl::GetFlag(FLAGS_display_results)) {
PrintResultsSoft(collector, variables, objective_var, hard_variables,
hard_constraints, soft_variables, soft_constraints,
index_from_key, key_from_index);
}
return violation_sum;
}
void SolveProblem(const std::map<int, FapVariable>& variables,
const std::vector<FapConstraint>& constraints,
const std::string& objective, const std::vector<int>& values,
bool soft) {
// Print Instance!
FapModelPrinter model_printer(variables, constraints, objective, values);
model_printer.PrintFapObjective();
model_printer.PrintFapVariables();
model_printer.PrintFapConstraints();
model_printer.PrintFapValues();
// Create Model & Solve!
if (!soft) {
LOG(INFO) << "Running HardFapSolver";
HardFapSolver(variables, constraints, objective, values);
} else {
LOG(INFO) << "Running SoftFapSolver";
int violation = SoftFapSolver(variables, constraints, objective, values);
if (violation == 0) {
LOG(INFO) << "The instance is feasible. "
"Now the HardFapSolver will be executed.";
LOG(INFO) << "Running HardFapSolver";
HardFapSolver(variables, constraints, objective, values);
}
}
}
} // namespace operations_research
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
absl::ParseCommandLine(argc, argv);
CHECK(!absl::GetFlag(FLAGS_directory).empty())
<< "Requires --directory=<directory name>";
LOG(INFO) << "Solving instance in directory "
<< absl::GetFlag(FLAGS_directory);
// Parse!
std::map<int, operations_research::FapVariable> variables;
std::vector<operations_research::FapConstraint> constraints;
std::string objective;
std::vector<int> values;
absl::flat_hash_map<int, operations_research::FapComponent> components;
operations_research::ParseInstance(
absl::GetFlag(FLAGS_directory), absl::GetFlag(FLAGS_find_components),
&variables, &constraints, &objective, &values, &components);
if (!absl::GetFlag(FLAGS_find_components)) {
operations_research::SolveProblem(variables, constraints, objective, values,
absl::GetFlag(FLAGS_soft));
} else {
int component_id = 1;
LOG(INFO) << "Number of components in the RLFAP graph "
<< components.size();
for (const auto& component : components) {
LOG(INFO) << "Solving Component " << component_id;
operations_research::SolveProblem(component.second.variables,
component.second.constraints, objective,
values, absl::GetFlag(FLAGS_soft));
component_id++;
}
}
return EXIT_SUCCESS;
}