forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cvrptw_with_breaks.cc
237 lines (220 loc) · 10.1 KB
/
cvrptw_with_breaks.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Capacitated Vehicle Routing Problem with Time Windows and Breaks.
// A description of the Capacitated Vehicle Routing Problem with Time Windows
// can be found here:
// http://en.wikipedia.org/wiki/Vehicle_routing_problem.
// The variant which is tackled by this model includes a capacity dimension,
// time windows and optional orders, with a penalty cost if orders are not
// performed. For the sake of simplicty, orders are randomly located and
// distances are computed using the Manhattan distance. Distances are assumed
// to be in meters and times in seconds.
// This variant also includes vehicle breaks which must happen during the day
// with two alternate breaks schemes: either a long break in the middle of the
// day or two smaller ones which can be taken during a longer period of the day.
#include <cstdint>
#include <vector>
#include "absl/flags/parse.h"
#include "absl/flags/usage.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "examples/cpp/cvrptw_lib.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"
using operations_research::Assignment;
using operations_research::DefaultRoutingSearchParameters;
using operations_research::FirstSolutionStrategy;
using operations_research::GetSeed;
using operations_research::IntervalVar;
using operations_research::LocationContainer;
using operations_research::RandomDemand;
using operations_research::RoutingDimension;
using operations_research::RoutingIndexManager;
using operations_research::RoutingModel;
using operations_research::RoutingNodeIndex;
using operations_research::RoutingSearchParameters;
using operations_research::ServiceTimePlusTransition;
using operations_research::Solver;
ABSL_FLAG(int, vrp_orders, 100, "Nodes in the problem.");
ABSL_FLAG(int, vrp_vehicles, 20,
"Size of Traveling Salesman Problem instance.");
ABSL_FLAG(bool, vrp_use_deterministic_random_seed, false,
"Use deterministic random seeds.");
ABSL_FLAG(std::string, routing_search_parameters, "",
"Text proto RoutingSearchParameters (possibly partial) that will "
"override the DefaultRoutingSearchParameters()");
const char* kTime = "Time";
const char* kCapacity = "Capacity";
int main(int argc, char** argv) {
google::InitGoogleLogging(argv[0]);
absl::ParseCommandLine(argc, argv);
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_orders))
<< "Specify an instance size greater than 0.";
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_vehicles))
<< "Specify a non-null vehicle fleet size.";
// VRP of size absl::GetFlag(FLAGS_vrp_size).
// Nodes are indexed from 0 to absl::GetFlag(FLAGS_vrp_orders), the starts and
// ends of the routes are at node 0.
const RoutingIndexManager::NodeIndex kDepot(0);
RoutingIndexManager manager(absl::GetFlag(FLAGS_vrp_orders) + 1,
absl::GetFlag(FLAGS_vrp_vehicles), kDepot);
RoutingModel routing(manager);
RoutingSearchParameters parameters = DefaultRoutingSearchParameters();
CHECK(google::protobuf::TextFormat::MergeFromString(
absl::GetFlag(FLAGS_routing_search_parameters), ¶meters));
parameters.set_first_solution_strategy(
FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION);
// Setting up locations.
const int64_t kXMax = 100000;
const int64_t kYMax = 100000;
const int64_t kSpeed = 10;
LocationContainer locations(
kSpeed, absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed));
for (int location = 0; location <= absl::GetFlag(FLAGS_vrp_orders);
++location) {
locations.AddRandomLocation(kXMax, kYMax);
}
// Setting the cost function.
const int vehicle_cost = routing.RegisterTransitCallback(
[&locations, &manager](int64_t i, int64_t j) {
return locations.ManhattanDistance(manager.IndexToNode(i),
manager.IndexToNode(j));
});
routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost);
// Adding capacity dimension constraints.
const int64_t kVehicleCapacity = 40;
const int64_t kNullCapacitySlack = 0;
RandomDemand demand(manager.num_nodes(), kDepot,
absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed));
demand.Initialize();
routing.AddDimension(routing.RegisterTransitCallback(
[&demand, &manager](int64_t i, int64_t j) {
return demand.Demand(manager.IndexToNode(i),
manager.IndexToNode(j));
}),
kNullCapacitySlack, kVehicleCapacity,
/*fix_start_cumul_to_zero=*/true, kCapacity);
// Adding time dimension constraints.
const int64_t kTimePerDemandUnit = 300;
const int64_t kHorizon = 24 * 3600;
ServiceTimePlusTransition time(
kTimePerDemandUnit,
[&demand](RoutingNodeIndex i, RoutingNodeIndex j) {
return demand.Demand(i, j);
},
[&locations](RoutingNodeIndex i, RoutingNodeIndex j) {
return locations.ManhattanTime(i, j);
});
routing.AddDimension(
routing.RegisterTransitCallback([&time, &manager](int64_t i, int64_t j) {
return time.Compute(manager.IndexToNode(i), manager.IndexToNode(j));
}),
kHorizon, kHorizon, /*fix_start_cumul_to_zero=*/false, kTime);
RoutingDimension* const time_dimension = routing.GetMutableDimension(kTime);
// Adding time windows.
std::mt19937 randomizer(
GetSeed(absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed)));
const int64_t kTWDuration = 5 * 3600;
for (int order = 1; order < manager.num_nodes(); ++order) {
const int64_t start =
absl::Uniform<int32_t>(randomizer, 0, kHorizon - kTWDuration);
time_dimension->CumulVar(order)->SetRange(start, start + kTWDuration);
routing.AddToAssignment(time_dimension->SlackVar(order));
}
// Minimize time variables.
for (int i = 0; i < routing.Size(); ++i) {
routing.AddVariableMinimizedByFinalizer(time_dimension->CumulVar(i));
}
for (int j = 0; j < absl::GetFlag(FLAGS_vrp_vehicles); ++j) {
routing.AddVariableMinimizedByFinalizer(
time_dimension->CumulVar(routing.Start(j)));
routing.AddVariableMinimizedByFinalizer(
time_dimension->CumulVar(routing.End(j)));
}
// Adding vehicle breaks:
// - 40min breaks between 11:00am and 1:00pm
// or
// - 2 x 30min breaks between 10:00am and 3:00pm, at least 1h apart
// First, fill service time vector.
std::vector<int64_t> service_times(routing.Size());
for (int node = 0; node < routing.Size(); node++) {
if (node >= routing.nodes()) {
service_times[node] = 0;
} else {
const RoutingIndexManager::NodeIndex index(node);
service_times[node] = kTimePerDemandUnit * demand.Demand(index, index);
}
}
const std::vector<std::vector<int>> break_data = {
{/*start_min*/ 11, /*start_max*/ 13, /*duration*/ 2400},
{/*start_min*/ 10, /*start_max*/ 15, /*duration*/ 1800},
{/*start_min*/ 10, /*start_max*/ 15, /*duration*/ 1800}};
Solver* const solver = routing.solver();
for (int vehicle = 0; vehicle < absl::GetFlag(FLAGS_vrp_vehicles);
++vehicle) {
std::vector<IntervalVar*> breaks;
for (int i = 0; i < break_data.size(); ++i) {
IntervalVar* const break_interval = solver->MakeFixedDurationIntervalVar(
break_data[i][0] * 3600, break_data[i][1] * 3600, break_data[i][2],
true, absl::StrCat("Break ", i, " on vehicle ", vehicle));
breaks.push_back(break_interval);
}
// break1 performed iff break2 performed
solver->AddConstraint(solver->MakeEquality(breaks[1]->PerformedExpr(),
breaks[2]->PerformedExpr()));
// break2 start 1h after break1.
solver->AddConstraint(solver->MakeIntervalVarRelationWithDelay(
breaks[2], Solver::STARTS_AFTER_END, breaks[1], 3600));
// break0 performed iff break2 unperformed
solver->AddConstraint(solver->MakeNonEquality(breaks[0]->PerformedExpr(),
breaks[2]->PerformedExpr()));
time_dimension->SetBreakIntervalsOfVehicle(std::move(breaks), vehicle,
service_times);
}
// Adding penalty costs to allow skipping orders.
const int64_t kPenalty = 10000000;
const RoutingIndexManager::NodeIndex kFirstNodeAfterDepot(1);
for (RoutingIndexManager::NodeIndex order = kFirstNodeAfterDepot;
order < routing.nodes(); ++order) {
std::vector<int64_t> orders(1, manager.NodeToIndex(order));
routing.AddDisjunction(orders, kPenalty);
}
// Solve, returns a solution if any (owned by RoutingModel).
const Assignment* solution = routing.SolveWithParameters(parameters);
if (solution != nullptr) {
LOG(INFO) << "Breaks: ";
for (const auto& break_interval :
solution->IntervalVarContainer().elements()) {
if (break_interval.PerformedValue() == 1) {
LOG(INFO) << break_interval.Var()->name() << " "
<< break_interval.DebugString();
} else {
LOG(INFO) << break_interval.Var()->name() << " unperformed";
}
}
DisplayPlan(manager, routing, *solution, false, 0, 0,
routing.GetDimensionOrDie(kCapacity),
routing.GetDimensionOrDie(kTime));
} else {
LOG(INFO) << "No solution found.";
}
return EXIT_SUCCESS;
}