forked from NVIDIA/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
190 lines (159 loc) · 6.64 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
Loss.py
"""
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from config import cfg
def get_loss(args):
"""
Get the criterion based on the loss function
args: commandline arguments
return: criterion, criterion_val
"""
if args.img_wt_loss:
criterion = ImageBasedCrossEntropyLoss2d(
classes=args.dataset_cls.num_classes, size_average=True,
ignore_index=args.dataset_cls.ignore_label,
upper_bound=args.wt_bound).cuda()
elif args.jointwtborder:
criterion = ImgWtLossSoftNLL(classes=args.dataset_cls.num_classes,
ignore_index=args.dataset_cls.ignore_label,
upper_bound=args.wt_bound).cuda()
else:
criterion = CrossEntropyLoss2d(size_average=True,
ignore_index=args.dataset_cls.ignore_label).cuda()
criterion_val = CrossEntropyLoss2d(size_average=True,
weight=None,
ignore_index=args.dataset_cls.ignore_label).cuda()
return criterion, criterion_val
class ImageBasedCrossEntropyLoss2d(nn.Module):
"""
Image Weighted Cross Entropy Loss
"""
def __init__(self, classes, weight=None, size_average=True, ignore_index=255,
norm=False, upper_bound=1.0):
super(ImageBasedCrossEntropyLoss2d, self).__init__()
logging.info("Using Per Image based weighted loss")
self.num_classes = classes
self.nll_loss = nn.NLLLoss2d(weight, size_average, ignore_index)
self.norm = norm
self.upper_bound = upper_bound
self.batch_weights = cfg.BATCH_WEIGHTING
def calculate_weights(self, target):
"""
Calculate weights of classes based on the training crop
"""
hist = np.histogram(target.flatten(), range(
self.num_classes + 1), normed=True)[0]
if self.norm:
hist = ((hist != 0) * self.upper_bound * (1 / hist)) + 1
else:
hist = ((hist != 0) * self.upper_bound * (1 - hist)) + 1
return hist
def forward(self, inputs, targets):
target_cpu = targets.data.cpu().numpy()
if self.batch_weights:
weights = self.calculate_weights(target_cpu)
self.nll_loss.weight = torch.Tensor(weights).cuda()
loss = 0.0
for i in range(0, inputs.shape[0]):
if not self.batch_weights:
weights = self.calculate_weights(target_cpu[i])
self.nll_loss.weight = torch.Tensor(weights).cuda()
loss += self.nll_loss(F.log_softmax(inputs[i].unsqueeze(0)),
targets[i].unsqueeze(0))
return loss
class CrossEntropyLoss2d(nn.Module):
"""
Cross Entroply NLL Loss
"""
def __init__(self, weight=None, size_average=True, ignore_index=255):
super(CrossEntropyLoss2d, self).__init__()
logging.info("Using Cross Entropy Loss")
self.nll_loss = nn.NLLLoss2d(weight, size_average, ignore_index)
# self.weight = weight
def forward(self, inputs, targets):
return self.nll_loss(F.log_softmax(inputs), targets)
def customsoftmax(inp, multihotmask):
"""
Custom Softmax
"""
soft = F.softmax(inp)
# This takes the mask * softmax ( sums it up hence summing up the classes in border
# then takes of summed up version vs no summed version
return torch.log(
torch.max(soft, (multihotmask * (soft * multihotmask).sum(1, keepdim=True)))
)
class ImgWtLossSoftNLL(nn.Module):
"""
Relax Loss
"""
def __init__(self, classes, ignore_index=255, weights=None, upper_bound=1.0,
norm=False):
super(ImgWtLossSoftNLL, self).__init__()
self.weights = weights
self.num_classes = classes
self.ignore_index = ignore_index
self.upper_bound = upper_bound
self.norm = norm
self.batch_weights = cfg.BATCH_WEIGHTING
self.fp16 = False
def calculate_weights(self, target):
"""
Calculate weights of the classes based on training crop
"""
if len(target.shape) == 3:
hist = np.sum(target, axis=(1, 2)) * 1.0 / target.sum()
else:
hist = np.sum(target, axis=(0, 2, 3)) * 1.0 / target.sum()
if self.norm:
hist = ((hist != 0) * self.upper_bound * (1 / hist)) + 1
else:
hist = ((hist != 0) * self.upper_bound * (1 - hist)) + 1
return hist[:-1]
def custom_nll(self, inputs, target, class_weights, border_weights, mask):
"""
NLL Relaxed Loss Implementation
"""
if (cfg.REDUCE_BORDER_EPOCH != -1 and cfg.EPOCH > cfg.REDUCE_BORDER_EPOCH):
border_weights = 1 / border_weights
target[target > 1] = 1
if self.fp16:
loss_matrix = (-1 / border_weights *
(target[:, :-1, :, :].half() *
class_weights.unsqueeze(0).unsqueeze(2).unsqueeze(3) *
customsoftmax(inputs, target[:, :-1, :, :].half())).sum(1)) * \
(1. - mask.half())
else:
loss_matrix = (-1 / border_weights *
(target[:, :-1, :, :].float() *
class_weights.unsqueeze(0).unsqueeze(2).unsqueeze(3) *
customsoftmax(inputs, target[:, :-1, :, :].float())).sum(1)) * \
(1. - mask.float())
# loss_matrix[border_weights > 1] = 0
loss = loss_matrix.sum()
# +1 to prevent division by 0
loss = loss / (target.shape[0] * target.shape[2] * target.shape[3] - mask.sum().item() + 1)
return loss
def forward(self, inputs, target):
if self.fp16:
weights = target[:, :-1, :, :].sum(1).half()
else:
weights = target[:, :-1, :, :].sum(1).float()
ignore_mask = (weights == 0)
weights[ignore_mask] = 1
loss = 0
target_cpu = target.data.cpu().numpy()
if self.batch_weights:
class_weights = self.calculate_weights(target_cpu)
for i in range(0, inputs.shape[0]):
if not self.batch_weights:
class_weights = self.calculate_weights(target_cpu[i])
loss = loss + self.custom_nll(inputs[i].unsqueeze(0),
target[i].unsqueeze(0),
class_weights=torch.Tensor(class_weights).cuda(),
border_weights=weights, mask=ignore_mask[i])
return loss