-
Notifications
You must be signed in to change notification settings - Fork 3
/
Longest Continuous Increasing Subsequence
81 lines (74 loc) · 1.97 KB
/
Longest Continuous Increasing Subsequence
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Problem Statement:
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).
Example 1:
Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.
Example 2:
Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
Solution:
class Solution:
def findLengthOfLCIS(self, nums: List[int]) -> int:
################## Using Array
if not nums:
return 0
mx=0
cnt=1
stack=[]
for i in nums:
if not stack:
stack+=[i]
else:
if stack[-1]<i:
cnt+=1
stack+=[i]
else:
stack=[i]
mx=max(mx,cnt)
cnt=1
mx=max(mx,cnt)
return mx
################# Using dp
"""
if not nums:
return 0
dp=[1]+[0]*(len(nums)-1)
for i in range(1,len(nums)):
if nums[i]>nums[i-1]:
dp[i]=dp[i-1]+1
else:
dp[i]=1
return max(dp)
"""
############### Java Dp
class Solution {
public int findLengthOfLCIS(int[] nums) {
if (nums.length<=1)
{
return nums.length;
}
int[] dp=new int[nums.length];
dp[0]=1;
int mx=1;
for(int i=1;i<nums.length;i++)
{
if (nums[i]>nums[i-1])
{
dp[i]=dp[i-1]+1;
mx=Math.max(mx,dp[i]);
}
else if (dp[i]==dp[i-1])
{
dp[i]=dp[i-1];
}
else
{
dp[i]=1;
}
}
return mx;
}
}