forked from qmonnet/rbpf
-
Notifications
You must be signed in to change notification settings - Fork 178
/
memory_region.rs
208 lines (199 loc) · 6.81 KB
/
memory_region.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! This module defines memory regions
use crate::{
ebpf,
error::{EbpfError, UserDefinedError},
vm::Config,
};
use std::fmt;
/// Memory region for bounds checking and address translation
#[derive(Clone, PartialEq, Eq, Default)]
pub struct MemoryRegion {
/// start host address
pub host_addr: u64,
/// start virtual address
pub vm_addr: u64,
/// Length in bytes
pub len: u64,
/// Size of regular gaps as bit shift (63 means this region is continuous)
pub vm_gap_shift: u8,
/// Is also writable (otherwise it is readonly)
pub is_writable: bool,
}
impl MemoryRegion {
/// Creates a new MemoryRegion structure from a slice
pub fn new_from_slice(v: &[u8], vm_addr: u64, vm_gap_size: u64, is_writable: bool) -> Self {
let vm_gap_shift = if vm_gap_size > 0 {
let vm_gap_shift =
std::mem::size_of::<u64>() as u8 * 8 - vm_gap_size.leading_zeros() as u8 - 1;
debug_assert_eq!(vm_gap_size, 1 << vm_gap_shift);
vm_gap_shift
} else {
std::mem::size_of::<u64>() as u8 * 8 - 1
};
MemoryRegion {
host_addr: v.as_ptr() as u64,
vm_addr,
len: v.len() as u64,
vm_gap_shift,
is_writable,
}
}
/// Convert a virtual machine address into a host address
/// Does not perform a lower bounds check, as that is already done by the binary search in MemoryMapping::map()
pub fn vm_to_host<E: UserDefinedError>(
&self,
vm_addr: u64,
len: u64,
) -> Result<u64, EbpfError<E>> {
let mut begin_offset = vm_addr - self.vm_addr;
let is_in_gap = ((begin_offset >> self.vm_gap_shift as u32) & 1) == 1;
let gap_mask = (1 << self.vm_gap_shift) - 1;
begin_offset = (begin_offset & !gap_mask) >> 1 | (begin_offset & gap_mask);
if let Some(end_offset) = begin_offset.checked_add(len as u64) {
if end_offset <= self.len && !is_in_gap {
return Ok(self.host_addr + begin_offset);
}
}
Err(EbpfError::InvalidVirtualAddress(vm_addr))
}
}
impl fmt::Debug for MemoryRegion {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"host_addr: {:#x?}-{:#x?}, vm_addr: {:#x?}-{:#x?}, len: {}",
self.host_addr,
self.host_addr + self.len,
self.vm_addr,
self.vm_addr + self.len,
self.len
)
}
}
impl std::cmp::PartialOrd for MemoryRegion {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(&other))
}
}
impl std::cmp::Ord for MemoryRegion {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.vm_addr.cmp(&other.vm_addr)
}
}
/// Type of memory access
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum AccessType {
/// Read
Load,
/// Write
Store,
}
/// Indirection to use instead of a slice to make handling easier
pub struct MemoryMapping<'a> {
/// Mapped (valid) regions
regions: Box<[MemoryRegion]>,
/// Copy of the regions vm_addr fields to improve cache density
dense_keys: Box<[u64]>,
/// VM configuration
config: &'a Config,
}
impl<'a> MemoryMapping<'a> {
fn construct_eytzinger_order(
&mut self,
ascending_regions: &[MemoryRegion],
mut in_index: usize,
out_index: usize,
) -> usize {
if out_index >= self.regions.len() {
return in_index;
}
in_index = self.construct_eytzinger_order(ascending_regions, in_index, 2 * out_index + 1);
self.regions[out_index] = ascending_regions[in_index].clone();
self.dense_keys[out_index] = ascending_regions[in_index].vm_addr;
self.construct_eytzinger_order(ascending_regions, in_index + 1, 2 * out_index + 2)
}
/// Creates a new MemoryMapping structure from the given regions
pub fn new(mut regions: Vec<MemoryRegion>, config: &'a Config) -> Self {
let mut result = Self {
regions: vec![MemoryRegion::default(); regions.len()].into_boxed_slice(),
dense_keys: vec![0; regions.len()].into_boxed_slice(),
config,
};
regions.sort();
result.construct_eytzinger_order(®ions, 0, 0);
result
}
/// Given a list of regions translate from virtual machine to host address
pub fn map<E: UserDefinedError>(
&self,
access_type: AccessType,
vm_addr: u64,
len: u64,
) -> Result<u64, EbpfError<E>> {
let mut index = 1;
while index <= self.dense_keys.len() {
index = (index << 1) + (self.dense_keys[index - 1] <= vm_addr) as usize;
}
index >>= index.trailing_zeros() + 1;
if index == 0 {
return Err(self.generate_access_violation(access_type, vm_addr, len));
}
let region = &self.regions[index - 1];
if access_type == AccessType::Load || region.is_writable {
if let Ok(host_addr) = region.vm_to_host::<E>(vm_addr, len as u64) {
return Ok(host_addr);
}
}
Err(self.generate_access_violation(access_type, vm_addr, len))
}
/// Resize the memory_region at the given index
pub fn resize_region<E: UserDefinedError>(
&mut self,
index: usize,
new_len: u64,
) -> Result<(), EbpfError<E>> {
if index < self.regions.len() - 1
&& self.regions[index].vm_addr + new_len > self.regions[index + 1].vm_addr
{
return Err(EbpfError::VirtualAddressOverlap(
self.regions[index + 1].vm_addr,
));
}
self.regions[index].len = new_len;
Ok(())
}
/// Helper for map to generate errors
fn generate_access_violation<E: UserDefinedError>(
&self,
access_type: AccessType,
vm_addr: u64,
len: u64,
) -> EbpfError<E> {
let stack_frame =
(vm_addr as i64 - ebpf::MM_STACK_START as i64) / self.config.stack_frame_size as i64;
if (-1..self.config.max_call_depth as i64 + 1).contains(&stack_frame) {
EbpfError::StackAccessViolation(
0, // Filled out later
access_type,
vm_addr,
len,
stack_frame,
)
} else {
let region_name = match vm_addr & !(ebpf::MM_PROGRAM_START - 1) {
ebpf::MM_PROGRAM_START => "program",
ebpf::MM_STACK_START => "stack",
ebpf::MM_HEAP_START => "heap",
ebpf::MM_INPUT_START => "input",
_ => "unknown",
};
EbpfError::AccessViolation(
0, // Filled out later
access_type,
vm_addr,
len,
region_name,
)
}
}
}