-
Notifications
You must be signed in to change notification settings - Fork 623
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好!问一下目标检测网络R-FCN的问题 #69
Comments
如果你用的是xx-merge.prototxt的结构,就要用xx-merge.caffemodel来finetune |
目前我并没有自己生成预训练模型xx-merge.caffemodel,是直接用hub主的cls中百度网盘的resnext50-32x4d.caffemodel,所以基础网络prototxt文件就相应用了deploy_resnext50-32x4d.prototxt,当然进行了相应的修改,将前几层网络设为不参入学习,并没有xx-merge.caffemodel。 |
py-R-FCN-master是不支持除方差操作的,而resnext的均值和方差跟resnet还是不同,这是个问题,但是应该不会导致这么大的精度衰减,其他的就不清楚了 |
嗯嗯,谢了,关键是我训练时精度参数全程并不收敛,上下浮动,而且浮动幅度很大 |
@firefox1031 我的caffe models的图像预处理都有除方差操作,而https://github.com/YuwenXiong/py-R-FCN是不支持的,可能是这个问题 |
@soeaver 谢谢你的回复,我接下来用你的版本尝试一下。另外还有个问题,你的模型里面提到了把batchnorm层合并到scale层里面,请问具体是怎么做的? |
@soeaver 你好,我尝试了你的版本,仍然有loss不收敛的问题,我是用的自己的数据集,总共三类,我在rfcn_voc_resnet18-priv-merge-ohem.prototxt里面做了相应的类别修改,使用的预训练模型是https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet中的预训练模型,cfg文件设置如下: 时不时就会出现这样的剧烈跳动,请问为什么会有这样的问题? |
AP for aeroplane = 0.4099
AP for bicycle = 0.2899
AP for bird = 0.2834
AP for boat = 0.1909
AP for bottle = 0.1109
AP for bus = 0.4431
AP for car = 0.3530
AP for cat = 0.5736
AP for chair = 0.1138
AP for cow = 0.2244
AP for diningtable = 0.2423
AP for dog = 0.5162
AP for horse = 0.4655
AP for motorbike = 0.4042
AP for person = 0.2541
AP for pottedplant = 0.0640
AP for sheep = 0.1348
AP for sofa = 0.2534
AP for train = 0.5169
AP for tvmonitor = 0.1607
Mean AP = 0.300
不知道是什么原因,是我哪里没有考虑到吗?
The text was updated successfully, but these errors were encountered: